001     151525
005     20240223115100.0
024 7 _ |a pmc:PMC7163308
|2 pmc
024 7 _ |a 10.1016/j.ebiom.2020.102730
|2 doi
024 7 _ |a altmetric:79998593
|2 altmetric
024 7 _ |a pmid:32305867
|2 pmid
037 _ _ |a DZNE-2020-01109
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Tan, Jing
|b 0
245 _ _ |a Lifetime risk of autosomal recessive mitochondrial disorders calculated from genetic databases
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2020-04-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708614549_31175
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundMitochondrial disorders are a group of rare diseases, caused by nuclear or mitochondrial DNA mutations. Their marked clinical and genetic heterogeneity as well as referral and ascertainment biases render phenotype-based prevalence estimations difficult. Here we calculated the lifetime risk of all known autosomal recessive mitochondrial disorders on basis of genetic data.MethodsWe queried the publicly available Genome Aggregation Database (gnomAD) and our in-house exome database to assess the allele frequency of disease-causing variants in genes associated with autosomal recessive mitochondrial disorders. Based on this, we estimated the lifetime risk of 249 autosomal recessive mitochondrial disorders. Three of these disorders and phenylketonuria (PKU) served as a proof of concept since calculations could be aligned with known birth prevalence data from newborn screening reports.FindingsThe estimated lifetime risks are very close to newborn screening data (where available), supporting the validity of the approach. For example, calculated lifetime risk of PKU (16·0/100,000) correlates well with known birth prevalence data (18·7/100,000). The combined estimated lifetime risk of 249 investigated mitochondrial disorders is 31·8 (20·9–50·6)/100,000 in our in-house database, 48·4 (40·3–58·5)/100,000 in the European gnomAD dataset, and 31·1 (26·7–36·3)/100,000 in the global gnomAD dataset. The disorders with the highest lifetime risk (> 3 per 100,000) were, in all datasets, those caused by mutations in the SPG7, ACADM, POLG and SLC22A5 genes.InterpretationWe provide a population-genetic estimation on the lifetime risk of an entire class of monogenic disorders. Our findings reveal the substantial cumulative prevalence of autosomal recessive mitochondrial disorders, far above previous estimates. These data will be very important for assigning diagnostic a priori probabilities, and for resource allocation in therapy development, public health management and biomedical research.FundingGerman Federal Ministry of Education and Research.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2020-04-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2020-03-06
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef
650 _ 2 |a ATPases Associated with Diverse Cellular Activities: genetics
|2 MeSH
650 _ 2 |a Acyl-CoA Dehydrogenase: genetics
|2 MeSH
650 _ 2 |a DNA Polymerase gamma: genetics
|2 MeSH
650 _ 2 |a Databases, Genetic: statistics & numerical data
|2 MeSH
650 _ 2 |a Genes, Recessive
|2 MeSH
650 _ 2 |a Genetic Predisposition to Disease
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Metalloendopeptidases: genetics
|2 MeSH
650 _ 2 |a Mitochondrial Diseases: epidemiology
|2 MeSH
650 _ 2 |a Mitochondrial Diseases: genetics
|2 MeSH
650 _ 2 |a Solute Carrier Family 22 Member 5: genetics
|2 MeSH
700 1 _ |a Wagner, Matias
|b 1
700 1 _ |a Stenton, Sarah L.
|0 0000-0003-4071-449X
|b 2
700 1 _ |a Strom, Tim M.
|b 3
700 1 _ |a Wortmann, Saskia B.
|b 4
700 1 _ |a Prokisch, Holger
|0 0000-0003-2379-6286
|b 5
700 1 _ |a Meitinger, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Oexle, Konrad
|b 7
700 1 _ |a Klopstock, Thomas
|0 P:(DE-2719)2810704
|b 8
|e Last author
773 1 8 |a 10.1016/j.ebiom.2020.102730
|b : Elsevier BV, 2020-04-01
|p 102730
|3 journal-article
|2 Crossref
|t EBioMedicine
|v 54
|y 2020
|x 2352-3964
773 _ _ |a 10.1016/j.ebiom.2020.102730
|g Vol. 54, p. 102730 -
|0 PERI:(DE-600)2799017-5
|p 102730
|t EBioMedicine
|v 54
|y 2020
|x 2352-3964
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S2352396420301055
856 4 _ |u https://pub.dzne.de/record/151525/files/DZNE-2020-01109.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/151525/files/DZNE-2020-01109.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:151525
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810704
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:10:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:10:09Z
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EBIOMEDICINE : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-26T13:10:09Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-02-28
920 1 _ |0 I:(DE-2719)1011201
|k AG Wagner
|l Neuropsychology
|x 0
920 1 _ |0 I:(DE-2719)1111016
|k AG Levin
|l Clinical Neurodegeneration
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011201
980 _ _ |a I:(DE-2719)1111016
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21