001     153432
005     20240306115243.0
024 7 _ |a pmid:32650185
|2 pmid
024 7 _ |a 10.1016/j.neurobiolaging.2020.06.005
|2 doi
024 7 _ |a 0197-4580
|2 ISSN
024 7 _ |a 1558-1497
|2 ISSN
024 7 _ |a altmetric:85352259
|2 altmetric
037 _ _ |a DZNE-2020-01429
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Nyberg, Lars
|0 0000-0002-3367-1746
|b 0
|e Corresponding author
245 _ _ |a Forecasting memory function in aging: pattern-completion ability and hippocampal activity relate to visuospatial functioning over 25 years
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709650552_29109
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Heterogeneity in episodic memory functioning in aging was assessed with a pattern-completion functional magnetic resonance imaging task that required reactivation of well-consolidated face-name memory traces from fragmented (partial) or morphed (noisy) face cues. About half of the examined individuals (N = 101) showed impaired (chance) performance on fragmented faces despite intact performance on complete and morphed faces, and they did not show a pattern-completion response in hippocampus or the examined subfields (CA1, CA23, DGCA4). This apparent pattern-completion deficit could not be explained by differential hippocampal atrophy. Instead, the impaired group displayed lower cortical volumes, accelerated reduction in mini-mental state examination scores, and lower general cognitive function as defined by longitudinal measures of visuospatial functioning and speed-of-processing. In the full sample, inter-individual differences in visuospatial functioning predicted performance on fragmented faces and hippocampal CA23 subfield activity over 25 years. These findings suggest that visuospatial functioning in middle age can forecast pattern-completion deficits in aging.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 _ 2 |a Age Factors
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Aged, 80 and over
|2 MeSH
650 _ 2 |a Aging: physiology
|2 MeSH
650 _ 2 |a Aging: psychology
|2 MeSH
650 _ 2 |a Cognition: physiology
|2 MeSH
650 _ 2 |a Diffusion Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Forecasting
|2 MeSH
650 _ 2 |a Hippocampus: diagnostic imaging
|2 MeSH
650 _ 2 |a Hippocampus: physiology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Memory: physiology
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Pattern Recognition, Visual: physiology
|2 MeSH
650 _ 2 |a Spatial Processing: physiology
|2 MeSH
700 1 _ |a Grande, Xenia
|0 P:(DE-2719)2812729
|b 1
|u dzne
700 1 _ |a Andersson, Micael
|b 2
700 1 _ |a Berron, David
|0 P:(DE-2719)2812972
|b 3
|u dzne
700 1 _ |a Lundquist, Anders
|b 4
700 1 _ |a Stiernstedt, Mikael
|b 5
700 1 _ |a Fjell, Anders
|b 6
700 1 _ |a Walhovd, Kristine
|0 0000-0003-1918-1123
|b 7
700 1 _ |a Orädd, Greger
|b 8
773 _ _ |a 10.1016/j.neurobiolaging.2020.06.005
|g Vol. 94, p. 217 - 226
|0 PERI:(DE-600)1498414-3
|p 217 - 226
|t Neurobiology of aging
|v 94
|y 2020
|x 0197-4580
856 4 _ |u https://europepmc.org/article/med/32650185
856 4 _ |u https://pub.dzne.de/record/153432/files/DZNE-2020-01429.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/153432/files/DZNE-2020-01429.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:153432
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812729
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2812972
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-10
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROBIOL AGING : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROBIOL AGING : 2021
|d 2022-11-10
920 1 _ |0 I:(DE-2719)5000006
|k AG Düzel
|l Clinical Neurophysiology and Memory
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)5000006
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21