000155161 001__ 155161 000155161 005__ 20240320115508.0 000155161 0247_ $$2pmc$$apmc:PMC8739316 000155161 0247_ $$2doi$$a10.1007/s00415-021-10640-4 000155161 0247_ $$2pmid$$apmid:34100990 000155161 0247_ $$2ISSN$$a0012-1037 000155161 0247_ $$2ISSN$$a0340-5354 000155161 0247_ $$2ISSN$$a0939-1517 000155161 0247_ $$2ISSN$$a1432-1459 000155161 0247_ $$2ISSN$$a1619-800X 000155161 0247_ $$2altmetric$$aaltmetric:107310097 000155161 0247_ $$2ISSN$$a0367-004x 000155161 0247_ $$2ISSN$$a0367-004X 000155161 037__ $$aDZNE-2021-00482 000155161 041__ $$aEnglish 000155161 082__ $$a610 000155161 1001_ $$00000-0001-9189-8941$$aRangus, Ida$$b0 000155161 245__ $$aFrequency and phenotype of thalamic aphasia. 000155161 260__ $$aBerlin$$bSpringer$$c2022 000155161 3367_ $$2DRIVER$$aarticle 000155161 3367_ $$2DataCite$$aOutput Types/Journal article 000155161 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654847688_23357 000155161 3367_ $$2BibTeX$$aARTICLE 000155161 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000155161 3367_ $$00$$2EndNote$$aJournal Article 000155161 500__ $$aISSN 1432-1459 not unique: **2 hits**.(CC BY) 000155161 520__ $$aAphasia is a recognized presenting symptom of thalamic lesions. Little is known regarding its frequency and phenotype. We examined the frequency of thalamic aphasia following Isolated Acute unilateral ischemic Lesions in the Thalamus (IALT) with respect to lesion location. Furthermore, we characterized thalamic aphasia according to affected language domains and severity.Fifty-two patients with IALT were analyzed [44% female, median age: 73 years (IQR: 60-79)]. Lesion location was determined using 3-Tesla magnetic resonance imaging and categorized as anterior, posterior, paramedian or inferolateral. Standardized language assessment was performed using the validated Aphasia checklist (ACL) directly after symptom onset. Aphasia was defined as an ACL sum score of < 135 (range: 0-148).Of 52 patients, 23 (44%) fulfilled the ACL diagnostic criteria for aphasia, including nearly all lesion locations and both sides. The average ACL sum score was 132 ± 11 (range: 98-147). Aphasia was characterized by deficits within domains of complex understanding of speech and verbal fluency. Patients with left anterior IALT were most severely affected, having significantly lower ACL scores than all other patients (117 ± 13 vs. 135 ± 8; p < 0.001). In particular, aphasia in patients with left anterior IALT was characterized by significantly worse performance in the rating of verbal communication, verbal fluency, and naming (all p ≤ 0.001).Aphasia occurs in almost half of patients with focal thalamic lesions. Thalamic aphasia is not confined to one predefined thalamic lesion location, but language deficits are particularly pronounced in patients with left anterior IALT presenting with a distinct pattern. 000155161 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0 000155161 542__ $$2Crossref$$i2021-06-08$$uhttps://creativecommons.org/licenses/by/4.0 000155161 542__ $$2Crossref$$i2021-06-08$$uhttps://creativecommons.org/licenses/by/4.0 000155161 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de 000155161 650_7 $$2Other$$aAphasia 000155161 650_7 $$2Other$$aLanguage 000155161 650_7 $$2Other$$aStroke 000155161 650_7 $$2Other$$aThalamus 000155161 650_2 $$2MeSH$$aAged 000155161 650_2 $$2MeSH$$aAphasia: etiology 000155161 650_2 $$2MeSH$$aFemale 000155161 650_2 $$2MeSH$$aHumans 000155161 650_2 $$2MeSH$$aLanguage 000155161 650_2 $$2MeSH$$aMagnetic Resonance Imaging 000155161 650_2 $$2MeSH$$aMale 000155161 650_2 $$2MeSH$$aPhenotype 000155161 650_2 $$2MeSH$$aSpeech 000155161 650_2 $$2MeSH$$aStroke 000155161 650_2 $$2MeSH$$aThalamus: diagnostic imaging 000155161 7001_ $$00000-0002-2855-0755$$aFritsch, Merve$$b1 000155161 7001_ $$0P:(DE-2719)2811033$$aEndres, Matthias$$b2 000155161 7001_ $$0P:(DE-HGF)0$$aUdke, Birgit$$b3 000155161 7001_ $$0P:(DE-2719)9000234$$aNolte, Christian$$b4$$eLast author 000155161 77318 $$2Crossref$$3journal-article$$a10.1007/s00415-021-10640-4$$bSpringer Science and Business Media LLC$$d2021-06-08$$n1$$p368-376$$tJournal of Neurology$$v269$$x0340-5354$$y2021 000155161 773__ $$0PERI:(DE-600)1421299-7$$a10.1007/s00415-021-10640-4$$n1$$p368-376$$tJournal of neurology$$v269$$x0340-5354$$y2021 000155161 8564_ $$uhttps://pub.dzne.de/record/155161/files/DZNE-2021-00482.pdf$$yOpenAccess 000155161 8564_ $$uhttps://pub.dzne.de/record/155161/files/DZNE-2021-00482.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000155161 909CO $$ooai:pub.dzne.de:155161$$pdnbdelivery$$popen_access$$pdriver$$pVDB$$popenaire 000155161 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811033$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE 000155161 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000234$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE 000155161 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0 000155161 9130_ $$0G:(DE-HGF)POF3-344$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vClinical and Health Care Research$$x0 000155161 9141_ $$y2021 000155161 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12 000155161 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12 000155161 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000155161 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12 000155161 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROL : 2021$$d2022-11-12 000155161 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12 000155161 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12 000155161 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000155161 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12 000155161 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROL : 2021$$d2022-11-12 000155161 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12 000155161 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger 000155161 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12 000155161 920__ $$lyes 000155161 9201_ $$0I:(DE-2719)1811005$$kAG Endres$$lCoordinator of Clinical Research$$x0 000155161 980__ $$ajournal 000155161 980__ $$aVDB 000155161 980__ $$aUNRESTRICTED 000155161 980__ $$aI:(DE-2719)1811005 000155161 9801_ $$aFullTexts 000155161 999C5 $$1B Crosson$$2Crossref$$9-- missing cx lookup --$$a10.1016/0093-934x(85)90085-9$$p257 -$$tBrain Lang$$uCrosson B (1985) Subcortical functions in language: a working model. Brain Lang 25:257–292. https://doi.org/10.1016/0093-934x(85)90085-9$$v25$$y1985 000155161 999C5 $$1EJ Metter$$2Crossref$$9-- missing cx lookup --$$a10.1001/archneur.1988.00520350067018$$p1229 -$$tArch Neurol$$uMetter EJ, Riege WH, Hanson WR, Jackson CA, Kempler D, van Lancker D (1988) Subcortical structures in Aphasia. Arch Neurol 45:1229–1234. https://doi.org/10.1001/archneur.1988.00520350067018$$v45$$y1988 000155161 999C5 $$1JD Schmahmann$$2Crossref$$9-- missing cx lookup --$$a10.1161/01.STR.0000087786.38997.9E$$p2264 -$$tStroke$$uSchmahmann JD (2003) Vascular syndromes of the thalamus. Stroke 34(9):2264–2278. https://doi.org/10.1161/01.STR.0000087786.38997.9E$$v34$$y2003 000155161 999C5 $$1L De Witte$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cortex.2010.09.002$$p273 -$$tCortex$$uDe Witte L, Brouns R, Kavadias D, Engelborghs S, De Deyn PP, Marien P (2011) Cognitive, affective and behavioural disturbances following vascular thalamic lesions: a review. Cortex 47(3):273–319. https://doi.org/10.1016/j.cortex.2010.09.002$$v47$$y2011 000155161 999C5 $$1A Osawa$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10072-016-2476-2$$p565 -$$tNeurol Sci$$uOsawa A, Maeshima S (2016) Aphasia and unilateral spatial neglect due to acute thalamic hemorrhage: clinical correlations and outcomes. Neurol Sci 37(4):565–572. https://doi.org/10.1007/s10072-016-2476-2$$v37$$y2016 000155161 999C5 $$1N Sodeyama$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00878870$$p289 -$$tJ Neurol$$uSodeyama N, Tamaki M, Sugishita M (1995) Persistent pure verbal amnesia and transient aphasia after left thalamic infarction. J Neurol 242(5):289–294. https://doi.org/10.1007/BF00878870$$v242$$y1995 000155161 999C5 $$1M Fritsch$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-019-09560-1$$p106 -$$tJ Neurol$$uFritsch M, Krause T, Klostermann F, Villringer K, Ihrke M, Nolte CH (2020) “Thalamic aphasia” after stroke is associated with left anterior lesion location. J Neurol 267(1):106–112. https://doi.org/10.1007/s00415-019-09560-1$$v267$$y2020 000155161 999C5 $$1D Karussis$$2Crossref$$9-- missing cx lookup --$$a10.1016/s0022-510x(99)00267-1$$p25 -$$tJ Neurol Sci$$uKarussis D, Leker RR, Abramsky O (2000) Cognitive dysfunction following thalamic stroke: a study of 16 cases and review of the literature. J Neurol Sci 172:25–29. https://doi.org/10.1016/s0022-510x(99)00267-1$$v172$$y2000 000155161 999C5 $$1R Sebastian$$2Crossref$$9-- missing cx lookup --$$a10.3389/fneur.2014.00231$$p231 -$$tFront Neurol$$uSebastian R, Schein MG, Davis C, Gomez Y, Newhart M, Oishi K, Hillis AE (2014) Aphasia or neglect after thalamic stroke: the various ways they may be related to cortical hypoperfusion. Front Neurol 5:231. https://doi.org/10.3389/fneur.2014.00231$$v5$$y2014 000155161 999C5 $$1S Mori$$2Crossref$$9-- missing cx lookup --$$a10.1161/01.STR.26.4.620$$p620 -$$tStroke$$uMori S, Sadoshima S, Ibayashi S, Fujishima M, Iino K (1995) Impact of thalamic hematoma on six-month mortality and motor and cognitive functional outcome. Stroke 26(4):620–626. https://doi.org/10.1161/01.STR.26.4.620$$v26$$y1995 000155161 999C5 $$1M Purdy$$2Crossref$$9-- missing cx lookup --$$a10.1080/02687030244000176$$p549 -$$tAphasiology$$uPurdy M (2002) Executive function ability in persons with aphasia. Aphasiology 16(4–6):549–557. https://doi.org/10.1080/02687030244000176$$v16$$y2002 000155161 999C5 $$1DC Kuljic-Obradovic$$2Crossref$$9-- missing cx lookup --$$a10.1046/j.1468-1331.2003.00604.x$$p445 -$$tEur J Neurol$$uKuljic-Obradovic DC (2003) Subcortical aphasia: three different language disorder syndromes? Eur J Neurol 10(4):445–448. https://doi.org/10.1046/j.1468-1331.2003.00604.x$$v10$$y2003 000155161 999C5 $$1M Radanovic$$2Crossref$$9-- missing cx lookup --$$a10.1016/s0093-934x(02)00554-0$$p337 -$$tBrain Lang$$uRadanovic M, Scaff M (2003) Speech and language disturbances due to subcortical lesions. Brain Lang 84(3):337–352. https://doi.org/10.1016/s0093-934x(02)00554-0$$v84$$y2003 000155161 999C5 $$1SE Nadeau$$2Crossref$$9-- missing cx lookup --$$a10.1006/brln.1997.1707$$p355 -$$tBrain Lang$$uNadeau SE, Crosson B (1997) Subcortical Aphasia. Brain Lang 58:355–402. https://doi.org/10.1006/brln.1997.1707$$v58$$y1997 000155161 999C5 $$1B Crosson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bandl.2012.06.011$$p73 -$$tBrain Lang$$uCrosson B (2013) Thalamic mechanisms in language: a reconsideration based on recent findings and concepts. Brain Lang 126(1):73–88. https://doi.org/10.1016/j.bandl.2012.06.011$$v126$$y2013 000155161 999C5 $$1J Bogousslavsky$$2Crossref$$9-- missing cx lookup --$$a10.1212/wnl.38.6.837$$p837 -$$tNeurology$$uBogousslavsky J, Regli F, Uske A (1988) Thalamic infarcts: clinical syndromes, etiology and prognosis. Neurology 38:837–848. https://doi.org/10.1212/wnl.38.6.837$$v38$$y1988 000155161 999C5 $$1E Carrera$$2Crossref$$9-- missing cx lookup --$$a10.1161/01.STR.0000147039.49252.2f$$p2826 -$$tStroke$$uCarrera E, Michel P, Bogousslavsky J (2004) Anteromedian, central, and posterolateral infarcts of the thalamus: three variant types. Stroke 35(12):2826–2831. https://doi.org/10.1161/01.STR.0000147039.49252.2f$$v35$$y2004 000155161 999C5 $$1G Percheron$$2Crossref$$9-- missing cx lookup --$$a10.1007/bf00315956$$p1 -$$tZ Neurol$$uPercheron G (1973) The anatomy of the arterial supply of the human thalamus and its use for the interpretation of the thalamic vascular pathology. Z Neurol 205(1):1–13. https://doi.org/10.1007/bf00315956$$v205$$y1973 000155161 999C5 $$1E Kalbe$$2Crossref$$9-- missing cx lookup --$$a10.1080/13803390490918273$$p779 -$$tJ Clin Exp Neuropsychol$$uKalbe E, Reinhold N, Brand M, Markowitsch HJ, Kessler J (2005) A new test battery to assess aphasic disturbances and associated cognitive dysfunctions—German normative data on the aphasia check list. J Clin Exp Neuropsychol 27(7):779–794. https://doi.org/10.1080/13803390490918273$$v27$$y2005 000155161 999C5 $$1JA Cohen$$2Crossref$$uCohen JA, Gelfer CE, Sweet RD (1980) Thalamic infarction producing aphasia. Mt Sinai J Med 47(4):398–404$$y1980 000155161 999C5 $$1B-M Whelan$$2Crossref$$9-- missing cx lookup --$$a10.1080/02687030244000446$$p1213 -$$tAphasiology$$uWhelan B-M, Murdoch BE, Theodoros DG, Silburn P, Hall B (2002) A role for the dominant thalamus in language? A linguistic comparison of two cases subsequent to unilateral thalamotomy procedures in the dominant and non-dominant hemispheres. Aphasiology 16(12):1213–1226. https://doi.org/10.1080/02687030244000446$$v16$$y2002 000155161 999C5 $$1B-M Whelan$$2Crossref$$9-- missing cx lookup --$$a10.1080/02687030500174050$$p1097 -$$tAphasiology$$uWhelan B-M, Murdoch B (2005) Unravelling subcortical linguistic substrates: comparison of thalamic versus cerebellar cognitive-linguistic regulation mechanisms. Aphasiology 19(12):1097–1106. https://doi.org/10.1080/02687030500174050$$v19$$y2005 000155161 999C5 $$1Z Shao$$2Crossref$$9-- missing cx lookup --$$a10.3389/fpsyg.2014.00772$$p772 -$$tFront Psychol$$uShao Z, Janse E, Visser K, Meyer AS (2014) What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front Psychol 5:772. https://doi.org/10.3389/fpsyg.2014.00772$$v5$$y2014 000155161 999C5 $$1DM Whiteside$$2Crossref$$9-- missing cx lookup --$$a10.1080/23279095.2015.1004574$$p29 -$$tAppl Neuropsychol Adult$$uWhiteside DM, Kealey T, Semla M, Luu H, Rice L, Basso MR, Roper B (2016) Verbal fluency: language or executive function measure? Appl Neuropsychol Adult 23(1):29–34. https://doi.org/10.1080/23279095.2015.1004574$$v23$$y2016 000155161 999C5 $$1DA Llano$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bandl.2012.06.004$$p62 -$$tBrain Lang$$uLlano DA (2013) Functional imaging of the thalamus in language. Brain Lang 126(1):62–72. https://doi.org/10.1016/j.bandl.2012.06.004$$v126$$y2013 000155161 999C5 $$1P Indefrey$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cognition.2002.06.001$$p101 -$$tCognition$$uIndefrey P, Levelt WJ (2004) The spatial and temporal signatures of word production components. Cognition 92(1–2):101–144. https://doi.org/10.1016/j.cognition.2002.06.001$$v92$$y2004 000155161 999C5 $$1AA Ford$$2Crossref$$9-- missing cx lookup --$$a10.3389/fnana.2013.00008$$p8 -$$tFront Neuroanat$$uFord AA, Triplett W, Sudhyadhom A, Gullett J, McGregor K, Fitzgerald DB, Mareci T, White K, Crosson B (2013) Broca’s area and its striatal and thalamic connections: a diffusion—MRI tractography study. Front Neuroanat 7:8. https://doi.org/10.3389/fnana.2013.00008$$v7$$y2013 000155161 999C5 $$1JD Schmahmann$$2Crossref$$9-- missing cx lookup --$$a10.1002/cne.902950212$$p299 -$$tJ Comp Neurol$$uSchmahmann JD, Pandya DN (1990) Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP and fluorescent tracer study. J Comp Neurol 295(2):299–326. https://doi.org/10.1002/cne.902950212$$v295$$y1990 000155161 999C5 $$1J Kievit$$2Crossref$$9-- missing cx lookup --$$a10.1007/bf00236173$$p299 -$$tExp Brain Res$$uKievit J, Kuypers HG (1977) Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey. Exp Brain Res 29(3–4):299–322. https://doi.org/10.1007/bf00236173$$v29$$y1977 000155161 999C5 $$1EH Yeterian$$2Crossref$$9-- missing cx lookup --$$a10.1002/cne.902820107$$p80 -$$tJ Comp Neurol$$uYeterian EH, Pandya DN (1989) Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 282(1):80–97. https://doi.org/10.1002/cne.902820107$$v282$$y1989