001     162846
005     20240208114853.0
024 7 _ |a 10.1016/j.dib.2021.107320
|2 doi
024 7 _ |a pmid:34485650
|2 pmid
024 7 _ |a pmc:PMC8408513
|2 pmc
024 7 _ |a altmetric:112990302
|2 altmetric
037 _ _ |a DZNE-2021-01501
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Schinke, Christian
|b 0
245 _ _ |a Dataset for: Modeling chemotherapy induced neurotoxicity with human induced pluripotent stem cell (iPSC)-derived sensory neurons.
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707312923_6692
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY-NC-ND)
520 _ _ |a Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and potentially irreversible adverse event of cytotoxic chemotherapy. We evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for chemotherapy induced neurotoxicity. Sensory neurons differentiated from two established induced pluripotent stem cell lines were used (s.c. BIHi005-A https://hpscreg.eu/cell-line/BIHi005-A and BIHi004-B https://hpscreg.eu/cell-line/BIHi004-B, Berlin Institute of Health Stem Cell Core Facility). Cell viability and cytotoxicity assays were performed, comparing susceptibility to four neurotoxic and two non-neurotoxic drugs. RNA sequencing analyses in paclitaxel vs. vehicle (DMSO)-treated sensory neurons were performed. Treatment of iPSC-DSN for 24 h with the neurotoxic drugs paclitaxel, bortezomib, vincristine and cisplatin led to a dose dependent decline of cell viability in clinically relevant IC50 ranges, which was not the case for the non-neurotoxic compounds doxorubicin and 5-fluorouracil. RNA sequencing analyses at 24 h, i.e. before paclitaxel-induced cell death occurred, revealed the differential expression of genes of neuronal injury, cellular stress response, and sterol pathways in response to 1 µM paclitaxel. Neuroprotective effects of lithium chloride co-incubation, which were previously shown in rodent dorsal root ganglia, could be replicated in human iPSC-DSN. Cell lines from the two different donors BIHi005-A and BIHi004-B showed different responses to the neurotoxic treatment in cell viability and cytotoxicity assays.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a 3R
|2 Other
650 _ 7 |a Chemotherapy induced neuropathy
|2 Other
650 _ 7 |a Induced pluripotent stem cell derived sensory neurons (iPSC-DSN)
|2 Other
650 _ 7 |a Lithium
|2 Other
650 _ 7 |a Replacement
|2 Other
650 _ 7 |a Transcriptome
|2 Other
700 1 _ |a Fernandez Vallone, Valeria
|b 1
700 1 _ |a Ivanov, Andranik
|b 2
700 1 _ |a Peng, Yangfan
|b 3
700 1 _ |a Körtvelyessy, Péter
|0 P:(DE-2719)2812030
|b 4
|u dzne
700 1 _ |a Nolte, Luca
|b 5
700 1 _ |a Huehnchen, Petra
|b 6
700 1 _ |a Beule, Dieter
|b 7
700 1 _ |a Stachelscheid, Harald
|b 8
700 1 _ |a Boehmerle, Wolfgang
|b 9
700 1 _ |a Endres, Matthias
|0 P:(DE-2719)2811033
|b 10
|e Last author
|u dzne
773 _ _ |a 10.1016/j.dib.2021.107320
|g Vol. 38, p. 107320 -
|0 PERI:(DE-600)2786545-9
|p 107320
|t Data in Brief
|v 38
|y 2021
|x 2352-3409
787 0 _ |a Schinke, Christian et.al.
|d Orlando, Fla. : Academic Press, 2021
|i RelatedTo
|0 DZNE-2021-00442
|r
|t Modeling chemotherapy induced neurotoxicity with human induced pluripotent stem cell (iPSC) -derived sensory neurons.
856 4 _ |u https://pub.dzne.de/record/162846/files/DZNE-2021-01501.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/162846/files/DZNE-2021-01501.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:162846
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812030
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2811033
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-31
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-31T09:03:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-31T09:03:54Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-31T09:03:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-30
920 1 _ |0 I:(DE-2719)1811005
|k AG Endres
|l Interdisciplinary Dementia Research
|x 0
920 1 _ |0 I:(DE-2719)5000006
|k AG Düzel
|l Clinical Neurophysiology and Memory
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1811005
980 _ _ |a I:(DE-2719)5000006
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21