000163713 001__ 163713
000163713 005__ 20240320115521.0
000163713 0247_ $$2doi$$a10.1016/j.exer.2022.109033
000163713 0247_ $$2pmid$$apmid:35288107
000163713 0247_ $$2ISSN$$a0014-4835
000163713 0247_ $$2ISSN$$a1096-0007
000163713 0247_ $$2altmetric$$aaltmetric:124671108
000163713 037__ $$aDZNE-2022-00452
000163713 041__ $$aEnglish
000163713 082__ $$a610
000163713 1001_ $$aHeisterkamp, Patrick$$b0
000163713 245__ $$aEvidence for endogenous exchange of cytoplasmic material between a subset of cone and rod photoreceptors within the adult mammalian retina via direct cell-cell connections.
000163713 260__ $$aLondon$$bAcademic Press$$c2022
000163713 3367_ $$2DRIVER$$aarticle
000163713 3367_ $$2DataCite$$aOutput Types/Journal article
000163713 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655201073_925
000163713 3367_ $$2BibTeX$$aARTICLE
000163713 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163713 3367_ $$00$$2EndNote$$aJournal Article
000163713 500__ $$a(CC BY-NC-ND)
000163713 520__ $$aPhotoreceptor cell transplantation into the mouse retina has been shown to result in the transfer of cytoplasmic material between donor and host photoreceptors. Recently it has been found that this inter-photoreceptor material transfer process is likely to be mediated by nanotube-like structures connecting donor and host photoreceptors. By leveraging cone-specific reporter mice and super-resolution microscopy we provide evidence for the transfer of cytoplasmic material also from endogenous cones to endogenous rod photoreceptors and the existence of nanotube-like cell-cell connections possibly mediating this process in the adult mouse retina, together with preliminary data indicating that horizontal material transfer may also occur in the human retina.
000163713 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000163713 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000163713 650_7 $$2Other$$aCell-cell connection
000163713 650_7 $$2Other$$aCone
000163713 650_7 $$2Other$$aMaterial transfer
000163713 650_7 $$2Other$$aPhotoreceptor
000163713 650_7 $$2Other$$aRod
000163713 650_7 $$2Other$$aSTORM
000163713 650_2 $$2MeSH$$aAnimals
000163713 650_2 $$2MeSH$$aMammals
000163713 650_2 $$2MeSH$$aMice
000163713 650_2 $$2MeSH$$aRetina
000163713 650_2 $$2MeSH$$aRetinal Cone Photoreceptor Cells
000163713 650_2 $$2MeSH$$aRetinal Rod Photoreceptor Cells
000163713 7001_ $$aBorsch, Oliver$$b1
000163713 7001_ $$aLezama, Nundehui Diaz$$b2
000163713 7001_ $$aGasparini, Sylvia$$b3
000163713 7001_ $$aFathima, Adeeba$$b4
000163713 7001_ $$aCarvalho, Livia S$$b5
000163713 7001_ $$0P:(DE-2719)2811441$$aWagner, Felix$$b6$$udzne
000163713 7001_ $$0P:(DE-2719)2000041$$aKarl, Mike O$$b7$$udzne
000163713 7001_ $$aSchlierf, Michael$$b8
000163713 7001_ $$aAder, Marius$$b9
000163713 773__ $$0PERI:(DE-600)1466924-9$$a10.1016/j.exer.2022.109033$$gVol. 219, p. 109033 -$$p109033$$tExperimental eye research$$v219$$x0014-4835$$y2022
000163713 8564_ $$uhttps://pub.dzne.de/record/163713/files/DZNE-2022-00452.pdf$$yOpenAccess
000163713 8564_ $$uhttps://pub.dzne.de/record/163713/files/DZNE-2022-00452.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000163713 909CO $$ooai:pub.dzne.de:163713$$pdnbdelivery$$pdriver$$popenaire$$pVDB$$popen_access
000163713 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811441$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000163713 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000041$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000163713 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000163713 9141_ $$y2022
000163713 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000163713 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000163713 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000163713 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-26
000163713 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000163713 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000163713 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP EYE RES : 2021$$d2022-11-17
000163713 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000163713 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000163713 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000163713 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000163713 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000163713 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000163713 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000163713 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-17$$wger
000163713 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000163713 9201_ $$0I:(DE-2719)1710004$$kAG Karl$$lRetinal Regeneration and Degeneration$$x0
000163713 980__ $$ajournal
000163713 980__ $$aVDB
000163713 980__ $$aUNRESTRICTED
000163713 980__ $$aI:(DE-2719)1710004
000163713 9801_ $$aFullTexts