001     163713
005     20240320115521.0
024 7 _ |a 10.1016/j.exer.2022.109033
|2 doi
024 7 _ |a pmid:35288107
|2 pmid
024 7 _ |a 0014-4835
|2 ISSN
024 7 _ |a 1096-0007
|2 ISSN
024 7 _ |a altmetric:124671108
|2 altmetric
037 _ _ |a DZNE-2022-00452
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Heisterkamp, Patrick
|b 0
245 _ _ |a Evidence for endogenous exchange of cytoplasmic material between a subset of cone and rod photoreceptors within the adult mammalian retina via direct cell-cell connections.
260 _ _ |a London
|c 2022
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655201073_925
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY-NC-ND)
520 _ _ |a Photoreceptor cell transplantation into the mouse retina has been shown to result in the transfer of cytoplasmic material between donor and host photoreceptors. Recently it has been found that this inter-photoreceptor material transfer process is likely to be mediated by nanotube-like structures connecting donor and host photoreceptors. By leveraging cone-specific reporter mice and super-resolution microscopy we provide evidence for the transfer of cytoplasmic material also from endogenous cones to endogenous rod photoreceptors and the existence of nanotube-like cell-cell connections possibly mediating this process in the adult mouse retina, together with preliminary data indicating that horizontal material transfer may also occur in the human retina.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Cell-cell connection
|2 Other
650 _ 7 |a Cone
|2 Other
650 _ 7 |a Material transfer
|2 Other
650 _ 7 |a Photoreceptor
|2 Other
650 _ 7 |a Rod
|2 Other
650 _ 7 |a STORM
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mammals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Retina
|2 MeSH
650 _ 2 |a Retinal Cone Photoreceptor Cells
|2 MeSH
650 _ 2 |a Retinal Rod Photoreceptor Cells
|2 MeSH
700 1 _ |a Borsch, Oliver
|b 1
700 1 _ |a Lezama, Nundehui Diaz
|b 2
700 1 _ |a Gasparini, Sylvia
|b 3
700 1 _ |a Fathima, Adeeba
|b 4
700 1 _ |a Carvalho, Livia S
|b 5
700 1 _ |a Wagner, Felix
|0 P:(DE-2719)2811441
|b 6
|u dzne
700 1 _ |a Karl, Mike O
|0 P:(DE-2719)2000041
|b 7
|u dzne
700 1 _ |a Schlierf, Michael
|b 8
700 1 _ |a Ader, Marius
|b 9
773 _ _ |a 10.1016/j.exer.2022.109033
|g Vol. 219, p. 109033 -
|0 PERI:(DE-600)1466924-9
|p 109033
|t Experimental eye research
|v 219
|y 2022
|x 0014-4835
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/163713/files/DZNE-2022-00452.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/163713/files/DZNE-2022-00452.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:163713
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2811441
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2000041
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EXP EYE RES : 2021
|d 2022-11-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
920 1 _ |0 I:(DE-2719)1710004
|k AG Karl
|l Retinal Regeneration and Degeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1710004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21