001     164441
005     20240208114853.0
024 7 _ |a 10.1016/j.dib.2020.105280
|2 doi
024 7 _ |a pmid:32190718
|2 pmid
024 7 _ |a pmc:PMC7068625
|2 pmc
024 7 _ |a altmetric:77627213
|2 altmetric
037 _ _ |a DZNE-2022-00993
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Mieskes, Frank
|b 0
245 _ _ |a Trajectory data of antero- and retrograde movement of mitochondria in living zebrafish larvae.
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707313258_6693
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (CC BY 4.0)
520 _ _ |a Recently, a large number of single particle tracking (SPT) approaches have been developed. Generally, SPT techniques can be split into two groups: ex post facto approaches where trajectory extraction is carried out after data acquisition and feedback based approaches that perform particle tracking in real time [1]. One feedback approach is 3D Orbital Tracking, where the laser excitation beam is rotated in a circle about the object, generating a so called orbit [2,3]. By calculating the particle position from the detected intensity after every orbit in relation to its center, this method allows the microscope to follow a single object in real time. The high spatiotemporal resolution of this method and the potential to optically manipulate the followed object during the measurement promises to yield new deep insights into biological systems [4-7]. By upgrading this approach in a way that the specimen is recentered by a xy-stage on the center of the microscope, particle tracking with this long-range tracking feature is no longer limited to the covered field-of-view. This allows for the observation of mitochondrial trafficking in living zebrafish embryos over long distances. Here, we provide the raw data for antero- and retrograde movement of mitochondria labelled with photo-activatable green fluorescent protein (mitoPAGFP). It relates to the scientific article 'Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo' [8]. By applying a correlation analysis on the trajectories, it is possible to distinguish between active transport and pausing events with less biasing compared to the mean squared displacement approach.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Fluorescence
|2 Other
650 _ 7 |a Mitochondria trafficking
|2 Other
650 _ 7 |a Orbital tracking
|2 Other
650 _ 7 |a Single particle tracking
|2 Other
650 _ 7 |a Transport
|2 Other
700 1 _ |a Wehnekamp, Fabian
|b 1
700 1 _ |a Plucińska, Gabriela
|0 P:(DE-2719)9000910
|b 2
|u dzne
700 1 _ |a Thong, Rachel
|0 P:(DE-2719)9000912
|b 3
|u dzne
700 1 _ |a Misgeld, Thomas
|0 P:(DE-2719)2810727
|b 4
|u dzne
700 1 _ |a Lamb, Don C
|b 5
773 _ _ |a 10.1016/j.dib.2020.105280
|g Vol. 29, p. 105280 -
|0 PERI:(DE-600)2786545-9
|p 105280
|t Data in Brief
|v 29
|y 2020
|x 2352-3409
787 0 _ |a Wehnekamp, Fabian et.al.
|d Cambridge : eLife Sciences Publications, 2019
|i RelatedTo
|0 DZNE-2020-07081
|r
|t Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo.
856 4 _ |u https://pub.dzne.de/record/164441/files/DZNE-2022-00993.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/164441/files/DZNE-2022-00993.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:164441
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000910
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000912
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810727
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-31
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-31T09:03:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-31T09:03:54Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-31T09:03:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-30
920 1 _ |0 I:(DE-2719)1110000-4
|k AG Misgeld
|l Neuronal Cell Biology
|x 0
920 1 _ |0 I:(DE-2719)6000016
|k München common
|l München common
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110000-4
980 _ _ |a I:(DE-2719)6000016
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21