TY  - JOUR
AU  - Aschenbrenner, Anna C
AU  - Bonaguro, Lorenzo
TI  - huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data.
JO  - STAR Protocols
VL  - 4
IS  - 2
SN  - 2666-1667
CY  - Amsterdam
PB  - Elsevier
M1  - DZNE-2023-00409
SP  - 102193
PY  - 2023
N1  - CC BY-NC-ND
AB  - Variance of gene expression is intrinsic to any given natural population. Here, we present a protocol to analyze this variance using a conditional quasi loss- and gain-of-function approach. The huva (human variation) package takes advantage of population-scale multi-omics data to infer gene function and the relationship between phenotype and gene expression. We describe the steps for setting up the huva workspace, formatting datasets, performing huva experiments, and exporting data. For complete details on the use and execution of this protocol, please refer to Bonaguro et al. (2022).1.
KW  - Bioinformatics (Other)
KW  - Gene Expression (Other)
KW  - Immunology (Other)
KW  - RNAseq (Other)
KW  - Systems Biology (Other)
LB  - PUB:(DE-HGF)16
C6  - pmid:36964906
C2  - pmc:PMC10050770
DO  - DOI:10.1016/j.xpro.2023.102193
UR  - https://pub.dzne.de/record/257340
ER  -