Journal Article DZNE-2023-00409

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data.

 ;

2023
Elsevier Amsterdam

STAR Protocols 4(2), 102193 () [10.1016/j.xpro.2023.102193]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Variance of gene expression is intrinsic to any given natural population. Here, we present a protocol to analyze this variance using a conditional quasi loss- and gain-of-function approach. The huva (human variation) package takes advantage of population-scale multi-omics data to infer gene function and the relationship between phenotype and gene expression. We describe the steps for setting up the huva workspace, formatting datasets, performing huva experiments, and exporting data. For complete details on the use and execution of this protocol, please refer to Bonaguro et al. (2022).1.

Keyword(s): Bioinformatics ; Gene Expression ; Immunology ; RNAseq ; Systems Biology

Classification:

Note: CC BY-NC-ND

Contributing Institute(s):
  1. Clinical Single Cell Omics (CSCO) / Systems Medicine (AG Schultze)
  2. Aging and Immunity (AG Aschenbrenner)
Research Program(s):
  1. 352 - Disease Mechanisms (POF4-352) (POF4-352)
  2. 354 - Disease Prevention and Healthy Aging (POF4-354) (POF4-354)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; DOAJ Seal ; Fees ; PubMed Central ; SCOPUS
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > BN DZNE > BN DZNE-AG Aschenbrenner
Document types > Articles > Journal Article
Institute Collections > BN DZNE > BN DZNE-AG Schultze
Full Text Collection
Public records
Publications Database


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Human variation in population-wide gene expression data predicts gene perturbation phenotype.
iScience 25(11), 105328 () [10.1016/j.isci.2022.105328] OpenAccess  Download fulltext Files  Download fulltextFulltext by Pubmed Central BibTeX | EndNote: XML, Text | RIS


 Record created 2023-04-03, last modified 2024-12-03


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by Pubmed Central
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)