001     267497
005     20240808164649.0
024 7 _ |a 10.1016/j.neurobiolaging.2023.12.003
|2 doi
024 7 _ |a pmid:38157587
|2 pmid
024 7 _ |a 0197-4580
|2 ISSN
024 7 _ |a 1558-1497
|2 ISSN
024 7 _ |a altmetric:158139011
|2 altmetric
037 _ _ |a DZNE-2024-00143
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Levin, Fedor
|0 P:(DE-2719)2814217
|b 0
|e First author
|u dzne
245 _ _ |a Longitudinal trajectories of cognitive reserve in hypometabolic subtypes of Alzheimer's disease.
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707825576_13996
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Previous studies have demonstrated resilience to AD-related neuropathology in a form of cognitive reserve (CR). In this study we investigated a relationship between CR and hypometabolic subtypes of AD, specifically the typical and the limbic-predominant subtypes. We analyzed data from 59 Aβ-positive cognitively normal (CN), 221 prodromal Alzheimer's disease (AD) and 174 AD dementia participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) from ADNI and ADNIGO/2 phases. For replication, we analyzed data from 5 Aβ-positive CN, 89 prodromal AD and 43 AD dementia participants from ADNI3. CR was estimated as standardized residuals in a model predicting cognition from temporoparietal grey matter volumes and covariates. Higher CR estimates predicted slower cognitive decline. Typical and limbic-predominant hypometabolic subtypes demonstrated similar baseline CR, but the results suggested a faster decline of CR in the typical subtype. These findings support the relationship between subtypes and CR, specifically longitudinal trajectories of CR. Results also underline the importance of longitudinal analyses in research on CR.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Alzheimer Disease: diagnostic imaging
|2 MeSH
650 _ 2 |a Alzheimer Disease: pathology
|2 MeSH
650 _ 2 |a Cognitive Reserve
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Cognition
|2 MeSH
650 _ 2 |a Gray Matter: diagnostic imaging
|2 MeSH
650 _ 2 |a Gray Matter: pathology
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: pathology
|2 MeSH
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a Cognitive reserve
|2 Other
650 _ 7 |a FDG-PET
|2 Other
650 _ 7 |a Mild cognitive impairment
|2 Other
650 _ 7 |a Prodromal AD
|2 Other
650 _ 7 |a Subtypes
|2 Other
700 1 _ |a Grothe, Michel J
|b 1
700 1 _ |a Dyrba, Martin
|0 P:(DE-2719)2810283
|b 2
|u dzne
700 1 _ |a Franzmeier, Nicolai
|b 3
700 1 _ |a Teipel, Stefan J
|0 P:(DE-2719)2000026
|b 4
|e Last author
|u dzne
700 1 _ |a Initiative, Alzheimer’s Disease Neuroimaging
|b 5
|e Collaboration Author
773 _ _ |a 10.1016/j.neurobiolaging.2023.12.003
|g Vol. 135, p. 26 - 38
|0 PERI:(DE-600)1498414-3
|p 26 - 38
|t Neurobiology of aging
|v 135
|y 2024
|x 0197-4580
856 4 _ |u https://pub.dzne.de/record/267497/files/DZNE-2024-00143%20SUP.docx
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/267497/files/DZNE-2024-00143.pdf
856 4 _ |u https://pub.dzne.de/record/267497/files/DZNE-2024-00143%20SUP.doc
856 4 _ |u https://pub.dzne.de/record/267497/files/DZNE-2024-00143%20SUP.odt
856 4 _ |u https://pub.dzne.de/record/267497/files/DZNE-2024-00143%20SUP.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/267497/files/DZNE-2024-00143.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:267497
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2814217
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810283
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2000026
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROBIOL AGING : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
920 1 _ |0 I:(DE-2719)1510100
|k AG Teipel
|l Clinical Dementia Research (Rostock /Greifswald)
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1510100
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21