001     268456
005     20240303002617.0
024 7 _ |a 10.3390/jimaging10020045
|2 doi
024 7 _ |a pmid:38392093
|2 pmid
024 7 _ |a pmc:PMC10889835
|2 pmc
024 7 _ |a altmetric:83453229
|2 altmetric
037 _ _ |a DZNE-2024-00208
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Chatterjee, Soumick
|0 0000-0001-7594-1188
|b 0
245 _ _ |a Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images.
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709035489_12958
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a COVID-19
|2 Other
650 _ 7 |a chest X-ray
|2 Other
650 _ 7 |a deep learning
|2 Other
650 _ 7 |a interpretability analysis
|2 Other
650 _ 7 |a model ensemble
|2 Other
650 _ 7 |a multilabel image classification
|2 Other
650 _ 7 |a pneumonia
|2 Other
700 1 _ |a Saad, Fatima
|0 0000-0002-9732-4292
|b 1
700 1 _ |a Sarasaen, Chompunuch
|0 0000-0003-4760-2263
|b 2
700 1 _ |a Ghosh, Suhita
|b 3
700 1 _ |a Krug, Valerie
|b 4
700 1 _ |a Khatun, Rupali
|b 5
700 1 _ |a Mishra, Rahul
|b 6
700 1 _ |a Desai, Nirja
|b 7
700 1 _ |a Radeva, Petia
|b 8
700 1 _ |a Rose, Georg
|b 9
700 1 _ |a Stober, Sebastian
|0 0000-0002-1717-4133
|b 10
700 1 _ |a Speck, Oliver
|0 P:(DE-2719)2810706
|b 11
700 1 _ |a Nürnberger, Andreas
|0 0000-0003-4311-0624
|b 12
773 _ _ |a 10.3390/jimaging10020045
|g Vol. 10, no. 2, p. 45 -
|0 PERI:(DE-600)2824270-1
|n 2
|p 45
|t Journal of imaging
|v 10
|y 2024
|x 2313-433X
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/268456/files/DZNE-2024-00208.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/268456/files/DZNE-2024-00208.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:268456
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2810706
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J IMAGING : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:59:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:59:23Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:59:23Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 1 _ |0 I:(DE-2719)1340009
|k AG Speck
|l Linking imaging projects iNET
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1340009
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21