000268847 001__ 268847
000268847 005__ 20240808164536.0
000268847 0247_ $$2pmc$$apmc:PMC11007318
000268847 0247_ $$2doi$$a10.1523/ENEURO.0294-23.2024
000268847 0247_ $$2pmid$$apmid:38519127
000268847 0247_ $$2altmetric$$aaltmetric:161108216
000268847 037__ $$aDZNE-2024-00351
000268847 041__ $$aEnglish
000268847 082__ $$a610
000268847 1001_ $$aChen, Xiaoli$$b0
000268847 245__ $$aRepetition Suppression Reveals Cue-specific Spatial Representations for Landmarks and Self-motion Cues in Human Retrosplenial Cortex.
000268847 260__ $$aWashington, DC$$bSoc.$$c2024
000268847 3367_ $$2DRIVER$$aarticle
000268847 3367_ $$2DataCite$$aOutput Types/Journal article
000268847 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713174366_9660
000268847 3367_ $$2BibTeX$$aARTICLE
000268847 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000268847 3367_ $$00$$2EndNote$$aJournal Article
000268847 520__ $$a The efficient use of various spatial cues within a setting is crucial for successful navigation. Two fundamental forms of spatial navigation, landmark-based and self-motion-based, engage distinct cognitive mechanisms. The question of whether these modes invoke shared or separate spatial representations in the brain remains unresolved. While nonhuman animal studies have yielded inconsistent results, human investigation is limited. In our previous work (Chen et al., 2019), we introduced a novel spatial navigation paradigm utilizing ultra-high field fMRI to explore neural coding of positional information. We found that different entorhinal subregions in the right hemisphere encode positional information for landmarks and self-motion cues. The present study tested the generalizability of our previous finding with a modified navigation paradigm. Although we did not replicate our previous finding in the entorhinal cortex, we identified adaptation-based allocentric positional codes for both cue types in the retrosplenial cortex (RSC), which were not confounded by the path to the spatial location. Crucially, the multi-voxel patterns of these spatial codes differed between the cue types, suggesting cue-specific positional coding. The parahippocampal cortex exhibited positional coding for self-motion cues, which was not dissociable from path length. Finally, the brain regions involved in successful navigation differed from our previous study, indicating overall distinct neural mechanisms recruited in our two studies. Taken together, the current findings demonstrate cue-specific allocentric positional coding in the human RSC in the same navigation task for the first time and that spatial representations in the brain are contingent on specific experimental conditions.
000268847 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000268847 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000268847 650_2 $$2MeSH$$aHumans
000268847 650_2 $$2MeSH$$aAnimals
000268847 650_2 $$2MeSH$$aCues
000268847 650_2 $$2MeSH$$aGyrus Cinguli
000268847 650_2 $$2MeSH$$aEntorhinal Cortex
000268847 650_2 $$2MeSH$$aBrain
000268847 650_2 $$2MeSH$$aSpatial Navigation
000268847 650_2 $$2MeSH$$aSpace Perception
000268847 650_7 $$2Other$$aadaptation
000268847 650_7 $$2Other$$aentorhinal cortex
000268847 650_7 $$2Other$$alandmark
000268847 650_7 $$2Other$$apath integration
000268847 650_7 $$2Other$$aretrosplenial cortex
000268847 650_7 $$2Other$$aspatial navigation
000268847 7001_ $$aWei, Ziwei$$b1
000268847 7001_ $$0P:(DE-2719)2810583$$aWolbers, Thomas$$b2$$eLast author$$udzne
000268847 773__ $$0PERI:(DE-600)2800598-3$$a10.1523/ENEURO.0294-23.2024$$gp. ENEURO.0294-23.2024 -$$n4$$pENEURO.0294-23.2024$$teNeuro$$v11$$x2373-2822$$y2024
000268847 8564_ $$uhttps://pub.dzne.de/record/268847/files/DZNE-2024-00351.pdf$$yOpenAccess
000268847 8564_ $$uhttps://pub.dzne.de/record/268847/files/DZNE-2024-00351.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000268847 909CO $$ooai:pub.dzne.de:268847$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000268847 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810583$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000268847 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000268847 9141_ $$y2024
000268847 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000268847 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000268847 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENEURO : 2022$$d2023-10-26
000268847 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000268847 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000268847 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
000268847 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2017-10-05T09:48:20Z
000268847 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2017-10-05T09:48:20Z
000268847 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2017-10-05T09:48:20Z
000268847 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000268847 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
000268847 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000268847 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-26
000268847 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
000268847 9201_ $$0I:(DE-2719)1310002$$kAG Wolbers$$lAging, Cognition and Technology$$x0
000268847 980__ $$ajournal
000268847 980__ $$aVDB
000268847 980__ $$aUNRESTRICTED
000268847 980__ $$aI:(DE-2719)1310002
000268847 9801_ $$aFullTexts