000269862 001__ 269862
000269862 005__ 20240808164347.0
000269862 0247_ $$2pmid$$apmid:38814781
000269862 0247_ $$2doi$$a10.1016/j.celrep.2024.114276
000269862 0247_ $$2ISSN$$a2211-1247
000269862 0247_ $$2ISSN$$a2639-1856
000269862 037__ $$aDZNE-2024-00688
000269862 082__ $$a610
000269862 1001_ $$aKu, Shih-Pi$$b0
000269862 245__ $$aPhase locking of hippocampal CA3 neurons to distal CA1 theta oscillations selectively predicts memory performance
000269862 260__ $$a[New York, NY]$$bElsevier$$c2024
000269862 3367_ $$2DRIVER$$aarticle
000269862 3367_ $$2DataCite$$aOutput Types/Journal article
000269862 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718970140_18076
000269862 3367_ $$2BibTeX$$aARTICLE
000269862 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000269862 3367_ $$00$$2EndNote$$aJournal Article
000269862 520__ $$aHow the coordination of neuronal spiking and brain rhythms between hippocampal subregions supports memory function remains elusive. We studied the interregional coordination of CA3 neuronal spiking with CA1 theta oscillations by recording electrophysiological signals along the proximodistal axis of the hippocampus in rats that were performing a high-memory-demand recognition memory task adapted from humans. We found that CA3 population spiking occurs preferentially at the peak of distal CA1 theta oscillations when memory was tested but only when previously encountered stimuli were presented. In addition, decoding analyses revealed that only population cell firing of proximal CA3 together with that of distal CA1 can predict performance at test in the present non-spatial task. Overall, our work demonstrates an important role for the synchronization of CA3 neuronal activity with CA1 theta oscillations during memory testing.
000269862 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000269862 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000269862 650_2 $$2MeSH$$aAnimals
000269862 650_2 $$2MeSH$$aTheta Rhythm: physiology
000269862 650_2 $$2MeSH$$aCA1 Region, Hippocampal: physiology
000269862 650_2 $$2MeSH$$aMale
000269862 650_2 $$2MeSH$$aRats
000269862 650_2 $$2MeSH$$aCA3 Region, Hippocampal: physiology
000269862 650_2 $$2MeSH$$aMemory: physiology
000269862 650_2 $$2MeSH$$aNeurons: physiology
000269862 650_2 $$2MeSH$$aAction Potentials: physiology
000269862 650_7 $$2Other$$aCA1
000269862 650_7 $$2Other$$aCA3
000269862 650_7 $$2Other$$aCP: Neuroscience
000269862 650_7 $$2Other$$adistal
000269862 650_7 $$2Other$$ahippocampus
000269862 650_7 $$2Other$$aodor
000269862 650_7 $$2Other$$apopulation coding
000269862 650_7 $$2Other$$aproximal
000269862 650_7 $$2Other$$arecognition memory
000269862 650_7 $$2Other$$asupport vector machine
000269862 650_7 $$2Other$$atheta
000269862 7001_ $$aAtucha, Erika$$b1
000269862 7001_ $$aAlavi, Nico$$b2
000269862 7001_ $$aMulla-Osman, Halla$$b3
000269862 7001_ $$aKayumova, Rukhshona$$b4
000269862 7001_ $$0P:(DE-2719)2811873$$aYoshida, Motoharu$$b5$$udzne
000269862 7001_ $$aCsicsvari, Jozsef$$b6
000269862 7001_ $$00000-0002-7586-6410$$aSauvage, Magdalena M.$$b7
000269862 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2024.114276$$gVol. 43, no. 6, p. 114276 -$$n6$$p114276$$tCell reports$$v43$$x2211-1247$$y2024
000269862 8564_ $$uhttps://pub.dzne.de/record/269862/files/DZNE-2024-00688.pdf$$yOpenAccess
000269862 8564_ $$uhttps://pub.dzne.de/record/269862/files/DZNE-2024-00688.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000269862 909CO $$ooai:pub.dzne.de:269862$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000269862 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811873$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000269862 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000269862 9141_ $$y2024
000269862 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-26
000269862 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000269862 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2022$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:49:39Z
000269862 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:49:39Z
000269862 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000269862 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:49:39Z
000269862 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2022$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000269862 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000269862 9201_ $$0I:(DE-2719)1310011$$kAG Yoshida$$lCognitive Neurophysiology$$x0
000269862 980__ $$ajournal
000269862 980__ $$aVDB
000269862 980__ $$aUNRESTRICTED
000269862 980__ $$aI:(DE-2719)1310011
000269862 9801_ $$aFullTexts