001     270296
005     20240707004303.0
024 7 _ |a 10.1007/s00259-024-06654-5
|2 doi
024 7 _ |a pmid:38396261
|2 pmid
024 7 _ |a pmc:PMC11178656
|2 pmc
024 7 _ |a 1619-7070
|2 ISSN
024 7 _ |a 1619-7089
|2 ISSN
024 7 _ |a altmetric:160041495
|2 altmetric
037 _ _ |a DZNE-2024-00768
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kaiser, Lena
|0 0000-0002-2084-5858
|b 0
245 _ _ |a Enhancing predictability of IDH mutation status in glioma patients at initial diagnosis: a comparative analysis of radiomics from MRI, [18F]FET PET, and TSPO PET.
260 _ _ |a Heidelberg [u.a.]
|c 2024
|b Springer-Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719822674_19444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a According to the World Health Organization classification for tumors of the central nervous system, mutation status of the isocitrate dehydrogenase (IDH) genes has become a major diagnostic discriminator for gliomas. Therefore, imaging-based prediction of IDH mutation status is of high interest for individual patient management. We compared and evaluated the diagnostic value of radiomics derived from dual positron emission tomography (PET) and magnetic resonance imaging (MRI) data to predict the IDH mutation status non-invasively.Eighty-seven glioma patients at initial diagnosis who underwent PET targeting the translocator protein (TSPO) using [18F]GE-180, dynamic amino acid PET using [18F]FET, and T1-/T2-weighted MRI scans were examined. In addition to calculating tumor-to-background ratio (TBR) images for all modalities, parametric images quantifying dynamic [18F]FET PET information were generated. Radiomic features were extracted from TBR and parametric images. The area under the receiver operating characteristic curve (AUC) was employed to assess the performance of logistic regression (LR) classifiers. To report robust estimates, nested cross-validation with five folds and 50 repeats was applied.TBRGE-180 features extracted from TSPO-positive volumes had the highest predictive power among TBR images (AUC 0.88, with age as co-factor 0.94). Dynamic [18F]FET PET reached a similarly high performance (0.94, with age 0.96). The highest LR coefficients in multimodal analyses included TBRGE-180 features, parameters from kinetic and early static [18F]FET PET images, age, and the features from TBRT2 images such as the kurtosis (0.97).The findings suggest that incorporating TBRGE-180 features along with kinetic information from dynamic [18F]FET PET, kurtosis from TBRT2, and age can yield very high predictability of IDH mutation status, thus potentially improving early patient management.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a IDH mutation status
|2 Other
650 _ 7 |a BraTS
|2 Other
650 _ 7 |a FET PET
|2 Other
650 _ 7 |a Glioma
|2 Other
650 _ 7 |a Radiomics
|2 Other
650 _ 7 |a TSPO PET
|2 Other
650 _ 7 |a Receptors, GABA
|2 NLM Chemicals
650 _ 7 |a Isocitrate Dehydrogenase
|0 EC 1.1.1.41
|2 NLM Chemicals
650 _ 7 |a TSPO protein, human
|2 NLM Chemicals
650 _ 7 |a (18F)fluoroethyltyrosine
|0 1326R5J1IA
|2 NLM Chemicals
650 _ 7 |a Tyrosine
|0 42HK56048U
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Receptors, GABA: genetics
|2 MeSH
650 _ 2 |a Receptors, GABA: metabolism
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Isocitrate Dehydrogenase: genetics
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Positron-Emission Tomography: methods
|2 MeSH
650 _ 2 |a Glioma: diagnostic imaging
|2 MeSH
650 _ 2 |a Glioma: genetics
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Brain Neoplasms: diagnostic imaging
|2 MeSH
650 _ 2 |a Brain Neoplasms: genetics
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Tyrosine: analogs & derivatives
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted
|2 MeSH
650 _ 2 |a Radiomics
|2 MeSH
700 1 _ |a Quach, S.
|b 1
700 1 _ |a Zounek, A. J.
|b 2
700 1 _ |a Wiestler, B.
|b 3
700 1 _ |a Zatcepin, A.
|0 P:(DE-2719)9001654
|b 4
|u dzne
700 1 _ |a Holzgreve, A.
|b 5
700 1 _ |a Bollenbacher, A.
|b 6
700 1 _ |a Bartos, L. M.
|b 7
700 1 _ |a Ruf, V. C.
|b 8
700 1 _ |a Böning, G.
|b 9
700 1 _ |a Thon, N.
|b 10
700 1 _ |a Herms, J.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Riemenschneider, M. J.
|b 12
700 1 _ |a Stöcklein, S.
|b 13
700 1 _ |a Brendel, M.
|0 P:(DE-2719)9001539
|b 14
|u dzne
700 1 _ |a Rupprecht, R.
|b 15
700 1 _ |a Tonn, J. C.
|b 16
700 1 _ |a Bartenstein, P.
|b 17
700 1 _ |a von Baumgarten, L.
|b 18
700 1 _ |a Ziegler, S.
|b 19
700 1 _ |a Albert, N. L.
|b 20
773 _ _ |a 10.1007/s00259-024-06654-5
|g Vol. 51, no. 8, p. 2371 - 2381
|0 PERI:(DE-600)2098375-X
|n 8
|p 2371 - 2381
|t European journal of nuclear medicine and molecular imaging
|v 51
|y 2024
|x 1619-7070
856 4 _ |u https://pub.dzne.de/record/270296/files/DZNE-2024-00768%20SUP.xlsx
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/270296/files/DZNE-2024-00768.pdf
856 4 _ |u https://pub.dzne.de/record/270296/files/DZNE-2024-00768%20SUP.csv
856 4 _ |u https://pub.dzne.de/record/270296/files/DZNE-2024-00768%20SUP.ods
856 4 _ |u https://pub.dzne.de/record/270296/files/DZNE-2024-00768%20SUP.xls
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/270296/files/DZNE-2024-00768.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:270296
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9001654
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)9001539
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J NUCL MED MOL I : 2022
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J NUCL MED MOL I : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass
|l Molecular Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110007
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21