001     270707
005     20240808164643.0
024 7 _ |a pmc:PMC11249425
|2 pmc
024 7 _ |a 10.1007/s12035-023-03869-9
|2 doi
024 7 _ |a pmid:38217668
|2 pmid
024 7 _ |a 0893-7648
|2 ISSN
024 7 _ |a 1559-1182
|2 ISSN
024 7 _ |a altmetric:158508028
|2 altmetric
037 _ _ |a DZNE-2024-00879
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Methi, Aditi
|0 P:(DE-2719)9001018
|b 0
|e First author
|u dzne
245 _ _ |a A Single-Cell Transcriptomic Analysis of the Mouse Hippocampus After Voluntary Exercise.
260 _ _ |a Totowa, NJ
|c 2024
|b Humana Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1722324887_23662
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Exercise has been recognized as a beneficial factor for cognitive health, particularly in relation to the hippocampus, a vital brain region responsible for learning and memory. Previous research has demonstrated that exercise-mediated improvement of learning and memory in humans and rodents correlates with increased adult neurogenesis and processes related to enhanced synaptic plasticity. Nevertheless, the underlying molecular mechanisms are not fully understood. With the aim to further elucidate these mechanisms, we provide a comprehensive dataset of the mouse hippocampal transcriptome at the single-cell level after 4 weeks of voluntary wheel-running. Our analysis provides a number of interesting observations. For example, the results suggest that exercise affects adult neurogenesis by accelerating the maturation of a subpopulation of Prdm16-expressing neurons. Moreover, we uncover the existence of an intricate crosstalk among multiple vital signaling pathways such as NF-κB, Wnt/β-catenin, Notch, and retinoic acid (RA) pathways altered upon exercise in a specific cluster of excitatory neurons within the Cornu Ammonis (CA) region of the hippocampus. In conclusion, our study provides an important resource dataset and sheds further light on the molecular changes induced by exercise in the hippocampus. These findings have implications for developing targeted interventions aimed at optimizing cognitive health and preventing age-related cognitive decline.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Aerobic exercise
|2 Other
650 _ 7 |a Cognitive decline
|2 Other
650 _ 7 |a Dementia
|2 Other
650 _ 7 |a Environmental enrichment
|2 Other
650 _ 7 |a Gene-expression
|2 Other
650 _ 7 |a Hippocampus
|2 Other
650 _ 7 |a Learning and memory
|2 Other
650 _ 7 |a Single-cell RNAseq
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Physical Conditioning, Animal: physiology
|2 MeSH
650 _ 2 |a Single-Cell Analysis
|2 MeSH
650 _ 2 |a Gene Expression Profiling
|2 MeSH
650 _ 2 |a Transcriptome: genetics
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Neurogenesis
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
650 _ 2 |a Volition
|2 MeSH
700 1 _ |a Islam, Rezaul
|0 P:(DE-2719)2811643
|b 1
|e First author
|u dzne
700 1 _ |a Kaurani, Lalit
|0 P:(DE-2719)2812832
|b 2
|u dzne
700 1 _ |a Sakib, M Sadman
|0 P:(DE-2719)2812054
|b 3
|u dzne
700 1 _ |a Krüger, Dennis M
|0 P:(DE-2719)2812548
|b 4
|u dzne
700 1 _ |a Pena, Tonatiuh
|0 P:(DE-2719)2811063
|b 5
|u dzne
700 1 _ |a Burkhardt, Susanne
|0 P:(DE-2719)2810773
|b 6
|u dzne
700 1 _ |a Liebetanz, David
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Fischer, André
|0 P:(DE-2719)2000047
|b 8
|e Last author
773 _ _ |a 10.1007/s12035-023-03869-9
|g Vol. 61, no. 8, p. 5628 - 5645
|0 PERI:(DE-600)2079384-4
|n 8
|p 5628 - 5645
|t Molecular neurobiology
|v 61
|y 2024
|x 0893-7648
856 4 _ |u https://pub.dzne.de/record/270707/files/DZNE-2024-00879%20SUP1.pdf
856 4 _ |u https://pub.dzne.de/record/270707/files/DZNE-2024-00879%20SUP2.xlsx
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/270707/files/DZNE-2024-00879.pdf
856 4 _ |u https://pub.dzne.de/record/270707/files/DZNE-2024-00879%20SUP2.csv
856 4 _ |u https://pub.dzne.de/record/270707/files/DZNE-2024-00879%20SUP2.ods
856 4 _ |u https://pub.dzne.de/record/270707/files/DZNE-2024-00879%20SUP2.xls
856 4 _ |u https://pub.dzne.de/record/270707/files/DZNE-2024-00879%20SUP1.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://pub.dzne.de/record/270707/files/DZNE-2024-00879.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:270707
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001018
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811643
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812832
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2812054
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812548
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811063
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810773
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2000047
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL NEUROBIOL : 2022
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOL NEUROBIOL : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
920 1 _ |0 I:(DE-2719)1410002
|k AG Fischer
|l Epigenetics and Systems Medicine in Neurodegenerative Diseases
|x 0
920 1 _ |0 I:(DE-2719)1440016
|k Bioinformatics and Genome Dynamics Core ; Bioinformatics Unit
|l Bioinformatics and Genome Dynamics Core
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410002
980 _ _ |a I:(DE-2719)1440016
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21