001     271346
005     20240901004648.0
024 7 _ |a 10.1038/s44318-024-00148-8
|2 doi
024 7 _ |a pmid:39009672
|2 pmid
024 7 _ |a pmc:PMC11329789
|2 pmc
024 7 _ |a 0261-4189
|2 ISSN
024 7 _ |a 1460-2075
|2 ISSN
024 7 _ |a altmetric:165416534
|2 altmetric
037 _ _ |a DZNE-2024-01047
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Zocher, Sara
|0 P:(DE-2719)2810548
|b 0
|e Last author
245 _ _ |a Targeting neuronal epigenomes for brain rejuvenation.
260 _ _ |a Hoboken, NJ [u.a.]
|c 2024
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1724841579_22476
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aging is associated with a progressive decline of brain function, and the underlying causes and possible interventions to prevent this cognitive decline have been the focus of intense investigation. The maintenance of neuronal function over the lifespan requires proper epigenetic regulation, and accumulating evidence suggests that the deterioration of the neuronal epigenetic landscape contributes to brain dysfunction during aging. Epigenetic aging of neurons may, however, be malleable. Recent reports have shown age-related epigenetic changes in neurons to be reversible and targetable by rejuvenation strategies that can restore brain function during aging. This review discusses the current evidence that identifies neuronal epigenetic aging as a driver of cognitive decline and a promising target of brain rejuvenation strategies, and it highlights potential approaches for the specific manipulation of the aging neuronal epigenome to restore a youthful epigenetic state in the brain.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Cognitive Decline
|2 Other
650 _ 7 |a Epigenetic Rejuvenation
|2 Other
650 _ 7 |a Epigenome Editing
|2 Other
650 _ 7 |a Neuron Aging
|2 Other
650 _ 7 |a Neuronal Epigenome
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Epigenesis, Genetic
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Aging: genetics
|2 MeSH
650 _ 2 |a Epigenome
|2 MeSH
650 _ 2 |a Rejuvenation: physiology
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: genetics
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: metabolism
|2 MeSH
773 _ _ |a 10.1038/s44318-024-00148-8
|g Vol. 43, no. 16, p. 3312 - 3326
|0 PERI:(DE-600)1467419-1
|n 16
|p 3312 - 3326
|t The EMBO journal
|v 43
|y 2024
|x 0261-4189
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/271346/files/DZNE-2024-01047.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/271346/files/DZNE-2024-01047.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:271346
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2810548
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EMBO J : 2022
|d 2023-08-24
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EMBO J : 2022
|d 2023-08-24
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
920 1 _ |0 I:(DE-2719)1710014
|k AG Toda ; AG Toda
|l Nuclear Architecture in Neural Plasticity and Aging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1710014
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21