000272334 001__ 272334
000272334 005__ 20240929005001.0
000272334 0247_ $$2doi$$a10.1038/s41583-024-00849-3
000272334 0247_ $$2pmid$$apmid:39164450
000272334 0247_ $$2ISSN$$a1471-0048
000272334 0247_ $$2ISSN$$a1471-003X
000272334 0247_ $$2altmetric$$aaltmetric:166501748
000272334 037__ $$aDZNE-2024-01153
000272334 041__ $$aEnglish
000272334 082__ $$a570
000272334 1001_ $$0P:(DE-2719)2812271$$aHilton, Brett J$$b0
000272334 245__ $$aNeuronal maturation and axon regeneration: unfixing circuitry to enable repair.
000272334 260__ $$aLondon$$bNature Publ. Group$$c2024
000272334 3367_ $$2DRIVER$$aarticle
000272334 3367_ $$2DataCite$$aOutput Types/Journal article
000272334 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1727166403_9748$$xReview Article
000272334 3367_ $$2BibTeX$$aARTICLE
000272334 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000272334 3367_ $$00$$2EndNote$$aJournal Article
000272334 520__ $$aMammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
000272334 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000272334 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000272334 650_2 $$2MeSH$$aAnimals
000272334 650_2 $$2MeSH$$aNerve Regeneration: physiology
000272334 650_2 $$2MeSH$$aAxons: physiology
000272334 650_2 $$2MeSH$$aHumans
000272334 650_2 $$2MeSH$$aNeurogenesis: physiology
000272334 650_2 $$2MeSH$$aNeurons: physiology
000272334 7001_ $$0P:(DE-2719)2814088$$aGriffin, Jarred$$b1$$udzne
000272334 7001_ $$00000-0002-7990-4568$$aFawcett, James W$$b2
000272334 7001_ $$0P:(DE-2719)2810270$$aBradke, Frank$$b3$$eLast author
000272334 773__ $$0PERI:(DE-600)2028902-9$$a10.1038/s41583-024-00849-3$$gVol. 25, no. 10, p. 649 - 667$$n10$$p649 - 667$$tNature reviews / Neuroscience$$v25$$x1471-0048$$y2024
000272334 8564_ $$uhttps://pub.dzne.de/record/272334/files/DZNE-2024-01153_Restricted.pdf
000272334 8564_ $$uhttps://pub.dzne.de/record/272334/files/DZNE-2024-01153_Restricted.pdf?subformat=pdfa$$xpdfa
000272334 909CO $$ooai:pub.dzne.de:272334$$pVDB
000272334 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814088$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000272334 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810270$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000272334 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000272334 9141_ $$y2024
000272334 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-26$$wger
000272334 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-08-26$$wger
000272334 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT REV NEUROSCI : 2022$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000272334 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT REV NEUROSCI : 2022$$d2023-08-26
000272334 9201_ $$0I:(DE-2719)1013002$$kAG Bradke$$lAxon Growth and Regeneration$$x0
000272334 980__ $$ajournal
000272334 980__ $$aVDB
000272334 980__ $$aI:(DE-2719)1013002
000272334 980__ $$aUNRESTRICTED