000275838 001__ 275838
000275838 005__ 20250119000340.0
000275838 0247_ $$2doi$$a10.1038/s41593-024-01827-9
000275838 0247_ $$2pmid$$apmid:39627588
000275838 0247_ $$2ISSN$$a1097-6256
000275838 0247_ $$2ISSN$$a1546-1726
000275838 0247_ $$2altmetric$$aaltmetric:171492107
000275838 037__ $$aDZNE-2025-00073
000275838 041__ $$aEnglish
000275838 082__ $$a610
000275838 1001_ $$00000-0001-5471-0356$$aAdameyko, Igor$$b0
000275838 245__ $$aApplying single-cell and single-nucleus genomics to studies of cellular heterogeneity and cell fate transitions in the nervous system.
000275838 260__ $$aNew York, NY$$bNature America$$c2024
000275838 3367_ $$2DRIVER$$aarticle
000275838 3367_ $$2DataCite$$aOutput Types/Journal article
000275838 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736774996_30145$$xReview Article
000275838 3367_ $$2BibTeX$$aARTICLE
000275838 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000275838 3367_ $$00$$2EndNote$$aJournal Article
000275838 520__ $$aSingle-cell and single-nucleus genomic approaches can provide unbiased and multimodal insights. Here, we discuss what constitutes a molecular cell atlas and how to leverage single-cell omics data to generate hypotheses and gain insights into cell transitions in development and disease of the nervous system. We share points of reflection on what to consider during study design and implementation as well as limitations and pitfalls.
000275838 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000275838 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000275838 650_2 $$2MeSH$$aAnimals
000275838 650_2 $$2MeSH$$aHumans
000275838 650_2 $$2MeSH$$aCell Differentiation: genetics
000275838 650_2 $$2MeSH$$aCell Nucleus: metabolism
000275838 650_2 $$2MeSH$$aCell Nucleus: genetics
000275838 650_2 $$2MeSH$$aGenomics: methods
000275838 650_2 $$2MeSH$$aNervous System: cytology
000275838 650_2 $$2MeSH$$aNervous System: metabolism
000275838 650_2 $$2MeSH$$aSingle-Cell Analysis: methods
000275838 7001_ $$00000-0003-3373-7386$$aBakken, Trygve$$b1
000275838 7001_ $$00000-0003-4625-6899$$aBhaduri, Aparna$$b2
000275838 7001_ $$00000-0002-5824-5209$$aChhatbar, Chintan$$b3
000275838 7001_ $$aFilbin, Mariella G$$b4
000275838 7001_ $$00000-0003-0481-9657$$aGate, David$$b5
000275838 7001_ $$00000-0002-7739-666X$$aHochgerner, Hannah$$b6
000275838 7001_ $$00000-0001-7921-4447$$aKim, Chang Nam$$b7
000275838 7001_ $$00000-0001-6507-8085$$aKrull, Jordan$$b8
000275838 7001_ $$00000-0003-1428-8757$$aLa Manno, Gioele$$b9
000275838 7001_ $$00000-0002-3457-5967$$aLi, Qingyun$$b10
000275838 7001_ $$00000-0002-3491-3444$$aLinnarsson, Sten$$b11
000275838 7001_ $$00000-0002-3264-8392$$aMa, Qin$$b12
000275838 7001_ $$00000-0003-3152-5574$$aMayer, Christian$$b13
000275838 7001_ $$00000-0002-4096-8601$$aMenon, Vilas$$b14
000275838 7001_ $$00000-0002-5507-2656$$aNano, Patricia$$b15
000275838 7001_ $$00000-0002-0349-1955$$aPrinz, Marco$$b16
000275838 7001_ $$aQuake, Steve$$b17
000275838 7001_ $$00000-0002-0156-2238$$aWalsh, Christopher A$$b18
000275838 7001_ $$aYang, Jin$$b19
000275838 7001_ $$00000-0001-6055-277X$$aBayraktar, Omer Ali$$b20
000275838 7001_ $$0P:(DE-2719)9002754$$aGokce, Ozgun$$b21
000275838 7001_ $$00000-0002-6049-2487$$aHabib, Naomi$$b22
000275838 7001_ $$00000-0002-3363-7302$$aKonopka, Genevieve$$b23
000275838 7001_ $$00000-0002-0840-1437$$aLiddelow, Shane A$$b24
000275838 7001_ $$00000-0003-2345-4964$$aNowakowski, Tomasz J$$b25
000275838 773__ $$0PERI:(DE-600)1494955-6$$a10.1038/s41593-024-01827-9$$gVol. 27, no. 12, p. 2278 - 2291$$n12$$p2278 - 2291$$tNature neuroscience$$v27$$x1097-6256$$y2024
000275838 8564_ $$uhttps://pub.dzne.de/record/275838/files/DZNE-2025-00073_Restricted.pdf
000275838 8564_ $$uhttps://pub.dzne.de/record/275838/files/DZNE-2025-00073_Restricted.pdf?subformat=pdfa$$xpdfa
000275838 909CO $$ooai:pub.dzne.de:275838$$pVDB
000275838 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002754$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b21$$kDZNE
000275838 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000275838 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger
000275838 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2025-01-07$$wger
000275838 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT NEUROSCI : 2022$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
000275838 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bNAT NEUROSCI : 2022$$d2025-01-07
000275838 9201_ $$0I:(DE-2719)1013041$$kAG Gokce$$lSpatial Dynamics of Neurodegeneration$$x0
000275838 980__ $$ajournal
000275838 980__ $$aVDB
000275838 980__ $$aI:(DE-2719)1013041
000275838 980__ $$aUNRESTRICTED