000276853 001__ 276853
000276853 005__ 20250225092533.0
000276853 0247_ $$2doi$$a10.1007/s00424-016-1921-7
000276853 0247_ $$2ISSN$$a0365-267X
000276853 0247_ $$2ISSN$$a0031-6768
000276853 0247_ $$2ISSN$$a1432-2013
000276853 037__ $$aDZNE-2025-00366
000276853 082__ $$a610
000276853 1001_ $$00000-0001-9893-0473$$aMilatz, Susanne$$b0
000276853 245__ $$aOne gene, two paracellular ion channels—claudin-10 in the kidney
000276853 260__ $$aHeidelberg$$bSpringer$$c2017
000276853 3367_ $$2DRIVER$$aarticle
000276853 3367_ $$2DataCite$$aOutput Types/Journal article
000276853 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740471883_16157$$xReview Article
000276853 3367_ $$2BibTeX$$aARTICLE
000276853 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276853 3367_ $$00$$2EndNote$$aJournal Article
000276853 520__ $$aClaudins are tight junction membrane proteins and regulate the paracellular passage of ions and water. They can seal the paracellular cleft against solute passage but also form paracellular channels. They are tetraspan proteins with two extracellular segments. Claudin-10 exists in at least two functional isoforms, claudin-10a and claudin-10b, that differ in their first transmembrane segment and first extracellular segment. Both isoforms act as selective paracellular ion channels, either for anions (claudin-10a) or for cations (claudin-10b). Their diverse functions are reflected in completely different expression patterns in the body, especially in the kidney. Their structural and functional similarities and differences make them ideal subjects to study determinants of claudin charge selectivity and pore formation. This review aims to summarise research on permeability properties of the claudin-10 channels and their role in physiology and pathophysiology of the kidney.
000276853 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000276853 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000276853 7001_ $$0P:(DE-2719)9003035$$aBreiderhoff, Tilman$$b1$$udzne
000276853 773__ $$0PERI:(DE-600)1463014-X$$a10.1007/s00424-016-1921-7$$gVol. 469, no. 1, p. 115 - 121$$n1$$p115 - 121$$tPflügers Archiv$$v469$$x0365-267X$$y2017
000276853 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9003035$$aExternal Institute$$b1$$kExtern
000276853 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000276853 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-02$$wger
000276853 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-02$$wger
000276853 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPFLUG ARCH EUR J PHY : 2022$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000276853 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
000276853 9801_ $$aEXTERN4VITA
000276853 980__ $$ajournal
000276853 980__ $$aI:(DE-2719)1040260