001     279879
005     20250720001607.0
024 7 _ |a 10.3389/fnagi.2025.1616390
|2 doi
024 7 _ |a pmid:40641620
|2 pmid
024 7 _ |a pmc:PMC12240999
|2 pmc
024 7 _ |a altmetric:178397211
|2 altmetric
037 _ _ |a DZNE-2025-00846
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Düsedau, Henning Peter
|b 0
245 _ _ |a Reduced synaptic tagging by complement protein C3 is associated with elevated extracellular matrix in the middle-aged cerebellum of mice.
260 _ _ |a Lausanne
|c 2025
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752572001_17617
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aging of the brain is associated with cognitive decline and recognized as a major risk factor for the development of neurodegenerative diseases. On a cellular level, brain aging is accompanied by a progressive increase of the basal pro-inflammatory tonus, leading to the activation of phagocytic pathways in brain-resident microglia and disruptive effects on synaptic neurotransmission. While the aging process affects all brain compartments at different velocities and one of the particularly affected regions is the cerebellum (CB), the underlying effects remain elusive.In the present study, we harnessed a murine model of natural aging in males combined with orthogonal experimental approaches comprising of cytokine gene expression analysis, flow cytometry, immunohistochemistry, and flow synaptometry.We report age-dependent morphological and phenotypic changes in microglia that are distinct in the cortex (CTX) and CB. Furthermore, we show an increased expression of cytokines and complement factors upon aging and a decline of C3-tagged VGLUT1+ presynaptic puncta in the CB. Using flow synaptometry to quantify the composition of synapses in more detail, we validated the reduction of C3b-labeled excitatory synaptosomes while the overall frequency of glutamatergic synaptosomes remained unaffected by aging. Notably, proteoglycans brevican and aggrecan, key components of the neural extracellular matrix, were significantly upregulated in the middle-aged CB.The data presented herein suggests the ECM-mediated shielding of synapses from complement-tagging and subsequent engulfment by microglia. Thus, we provide novel insights into mechanisms that may confer resilience in the brain by modulating synapse removal in the context of aging.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a aging
|2 Other
650 _ 7 |a cerebellum
|2 Other
650 _ 7 |a complement system
|2 Other
650 _ 7 |a extracellular matrix
|2 Other
650 _ 7 |a microglia
|2 Other
650 _ 7 |a proteoglycans
|2 Other
650 _ 7 |a synaptic pruning
|2 Other
650 _ 7 |a synaptosomes
|2 Other
700 1 _ |a Cangalaya, Carla
|0 P:(DE-2719)9001455
|b 1
|e First author
|u dzne
700 1 _ |a Stoyanov, Stoyan Borislavov
|0 P:(DE-2719)2809920
|b 2
700 1 _ |a Dityatev, Alexander
|0 P:(DE-2719)2810577
|b 3
|u dzne
700 1 _ |a Dunay, Ildiko Rita
|b 4
773 _ _ |a 10.3389/fnagi.2025.1616390
|g Vol. 17, p. 1616390
|0 PERI:(DE-600)2558898-9
|p 1616390
|t Frontiers in aging neuroscience
|v 17
|y 2025
|x 1663-4365
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279879/files/DZNE-2025-00846.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279879/files/DZNE-2025-00846.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279879
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001455
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2809920
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810577
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT AGING NEUROSCI : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-06T07:55:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-06T07:55:22Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-01-06T07:55:22Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-2719)1310007
|k AG Dityatev
|l Molecular Neuroplasticity
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1310007
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21