Journal Article DZNE-2025-00846

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Reduced synaptic tagging by complement protein C3 is associated with elevated extracellular matrix in the middle-aged cerebellum of mice.

 ;  ;  ;  ;

2025
Frontiers Research Foundation Lausanne

Frontiers in aging neuroscience 17, 1616390 () [10.3389/fnagi.2025.1616390]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Aging of the brain is associated with cognitive decline and recognized as a major risk factor for the development of neurodegenerative diseases. On a cellular level, brain aging is accompanied by a progressive increase of the basal pro-inflammatory tonus, leading to the activation of phagocytic pathways in brain-resident microglia and disruptive effects on synaptic neurotransmission. While the aging process affects all brain compartments at different velocities and one of the particularly affected regions is the cerebellum (CB), the underlying effects remain elusive.In the present study, we harnessed a murine model of natural aging in males combined with orthogonal experimental approaches comprising of cytokine gene expression analysis, flow cytometry, immunohistochemistry, and flow synaptometry.We report age-dependent morphological and phenotypic changes in microglia that are distinct in the cortex (CTX) and CB. Furthermore, we show an increased expression of cytokines and complement factors upon aging and a decline of C3-tagged VGLUT1+ presynaptic puncta in the CB. Using flow synaptometry to quantify the composition of synapses in more detail, we validated the reduction of C3b-labeled excitatory synaptosomes while the overall frequency of glutamatergic synaptosomes remained unaffected by aging. Notably, proteoglycans brevican and aggrecan, key components of the neural extracellular matrix, were significantly upregulated in the middle-aged CB.The data presented herein suggests the ECM-mediated shielding of synapses from complement-tagging and subsequent engulfment by microglia. Thus, we provide novel insights into mechanisms that may confer resilience in the brain by modulating synapse removal in the context of aging.

Keyword(s): aging ; cerebellum ; complement system ; extracellular matrix ; microglia ; proteoglycans ; synaptic pruning ; synaptosomes

Classification:

Contributing Institute(s):
  1. Molecular Neuroplasticity (AG Dityatev)
Research Program(s):
  1. 351 - Brain Function (POF4-351) (POF4-351)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > MD DZNE > MD DZNE-AG Dityatev
Full Text Collection
Public records
Publications Database

 Record created 2025-07-14, last modified 2025-07-20


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by Pubmed Central
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)