000279884 001__ 279884
000279884 005__ 20250716101214.0
000279884 0247_ $$2doi$$a10.1016/j.jphotobiol.2025.113191
000279884 0247_ $$2pmid$$apmid:40460513
000279884 0247_ $$2ISSN$$a1011-1344
000279884 0247_ $$2ISSN$$a1873-2682
000279884 037__ $$aDZNE-2025-00851
000279884 041__ $$aEnglish
000279884 082__ $$a540
000279884 1001_ $$aArmăşescu, Florian$$b0
000279884 245__ $$aFiber-optic-guided near-infrared laser exposure induces depolarization of cultured primary sensory neurons and modifies biophysical properties of human Nav1.5 channels.
000279884 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2025
000279884 3367_ $$2DRIVER$$aarticle
000279884 3367_ $$2DataCite$$aOutput Types/Journal article
000279884 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752572404_18055
000279884 3367_ $$2BibTeX$$aARTICLE
000279884 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279884 3367_ $$00$$2EndNote$$aJournal Article
000279884 520__ $$aPhotobiomodulation, a therapeutic method promoting wound healing, reduction in inflammation, pain and apoptosis, was widely tested in neurological/psychiatric disorders. In Parkinson's disease positive results have been obtained recently by transcranial or deep-fiber-optic-based near-infrared (NIR) light application. We assessed the effects of NIR stimulation with a 808.5 nm diode laser applied via a multimode fiber with a sharp tip placed over the cell on enzyme-dissociated cultured adult rat primary sensory neurons and human embryo kidney (HEK293) cells stably expressing human voltage-dependent Na+ channels (Nav1.5) approached via patch-clamp. For each type of cell, specific series of voltage- or current-clamp protocols were applied initially and after 3 min of laser exposure or control conditions. Laser exposure induced in neurons a resting potential depolarization (6.6 ± 1.8 mV vs. 2.4 ± 1.8 mV in control, mean ± SEM, p = 0.0594). In Nav1.5-expressing cells, peak INa amplitude slightly increased after laser application (111.2 ± 14.9 % vs. 70.6 ± 10.4 % in control experiments), and in outside-out patches the differences were larger (96.64 ± 5.25 %-laser vs. 37.95 ± 9.14 %-control). Via chemiluminometry we evidenced a delayed increase in ATP production in laser-exposed HEK293 cells. An explanation of these effects is that NIR exposure facilitates ATP production, maintaining an adequate state of Na+ channels phosphorylation, but we cannot exclude direct polarization effects on macromolecules including ion channels produced by the intense oriented electric field of the laser beam.
000279884 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000279884 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000279884 650_7 $$2Other$$aNIR laser
000279884 650_7 $$2Other$$aNav1.5
000279884 650_7 $$2Other$$aPatch-clamp
000279884 650_7 $$2Other$$aPhosphorylation
000279884 650_7 $$2Other$$aPhotobiomodulation
000279884 650_7 $$2Other$$aPrimary sensory neuron
000279884 650_7 $$2NLM Chemicals$$aNAV1.5 Voltage-Gated Sodium Channel
000279884 650_7 $$2NLM Chemicals$$aSCN5A protein, human
000279884 650_2 $$2MeSH$$aHumans
000279884 650_2 $$2MeSH$$aHEK293 Cells
000279884 650_2 $$2MeSH$$aNAV1.5 Voltage-Gated Sodium Channel: metabolism
000279884 650_2 $$2MeSH$$aInfrared Rays
000279884 650_2 $$2MeSH$$aRats
000279884 650_2 $$2MeSH$$aAnimals
000279884 650_2 $$2MeSH$$aSensory Receptor Cells: radiation effects
000279884 650_2 $$2MeSH$$aSensory Receptor Cells: metabolism
000279884 650_2 $$2MeSH$$aSensory Receptor Cells: cytology
000279884 650_2 $$2MeSH$$aLasers
000279884 650_2 $$2MeSH$$aCells, Cultured
000279884 650_2 $$2MeSH$$aPatch-Clamp Techniques
000279884 650_2 $$2MeSH$$aMembrane Potentials: radiation effects
000279884 7001_ $$aAmuzescu, Bogdan$$b1
000279884 7001_ $$aGheorghe, Roxana-Olimpia$$b2
000279884 7001_ $$0P:(DE-2719)9002399$$aGhenghea, Mihail$$b3$$udzne
000279884 7001_ $$aRistoiu, Violeta$$b4
000279884 7001_ $$aCiurea, Jean$$b5
000279884 7001_ $$aGruia, Ion$$b6
000279884 773__ $$0PERI:(DE-600)1482691-4$$a10.1016/j.jphotobiol.2025.113191$$gVol. 269, p. 113191 -$$p113191$$tJournal of photochemistry and photobiology / B$$v269$$x1011-1344$$y2025
000279884 8564_ $$uhttps://pub.dzne.de/record/279884/files/DZNE-2025-00851%20SUP.docx
000279884 8564_ $$uhttps://pub.dzne.de/record/279884/files/DZNE-2025-00851_Restricted.pdf
000279884 8564_ $$uhttps://pub.dzne.de/record/279884/files/DZNE-2025-00851_Restricted.pdf?subformat=pdfa$$xpdfa
000279884 8564_ $$uhttps://pub.dzne.de/record/279884/files/DZNE-2025-00851%20SUP.doc
000279884 8564_ $$uhttps://pub.dzne.de/record/279884/files/DZNE-2025-00851%20SUP.odt
000279884 8564_ $$uhttps://pub.dzne.de/record/279884/files/DZNE-2025-00851%20SUP.pdf
000279884 909CO $$ooai:pub.dzne.de:279884$$pVDB
000279884 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002399$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000279884 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000279884 9141_ $$y2025
000279884 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-05$$wger
000279884 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHOTOCH PHOTOBIO B : 2022$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
000279884 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHOTOCH PHOTOBIO B : 2022$$d2024-12-05
000279884 9201_ $$0I:(DE-2719)1310007$$kAG Dityatev$$lMolecular Neuroplasticity$$x0
000279884 980__ $$ajournal
000279884 980__ $$aVDB
000279884 980__ $$aI:(DE-2719)1310007
000279884 980__ $$aUNRESTRICTED