001     281188
005     20251028102646.0
024 7 _ |a 10.1002/advs.202507624
|2 doi
024 7 _ |a altmetric:180382897
|2 altmetric
024 7 _ |a pmid:40817753
|2 pmid
037 _ _ |a DZNE-2025-01089
041 _ _ |a English
082 _ _ |a 624
100 1 _ |a Flaskamp, Lavinia
|b 0
245 _ _ |a Assessing Extracellular Vesicle Turnover In Vivo Using Highly Sensitive Phosphatidylserine‐Binding Reagents
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761638783_19593
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Extracellular vesicles (EVs) are emerging as crucial players in cell communication and hold great promise as biomarkers and therapeutic tools. However, their diversity makes it challenging to detect, classify, and utilize them effectively, which limits their clinical applicability. A key challenge is the lack of reliable markers to identify EVs consistently. In this study, a novel high-affinity phosphatidylserine (PS)-binding reagent is introduced for EV analysis. PS is known as a marker of apoptotic cells and activated platelets, but its presence on EVs is debated due to variations in lipid composition. By comparing multiple PS-binding reagents, including MFG-E8 derivatives and Annexin V, it is demonstrated that ≈90% of EVs in human and mouse blood carry PS. Using the optimized reagent, the first in vivo insights into EV turnover are provided, showing that PS+ EVs in mouse blood are rapidly cleared (≈50% within 30 min) but persist on immune cells in the spleen. This discovery increases the potential of EVs as disease biomarkers and therapeutic targets by improving EV detection and isolation as well as opening the door for standardized quantification and diagnostic monitoring.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
650 _ 7 |a EV‐turnover
|2 Other
650 _ 7 |a MFG‐E8
|2 Other
650 _ 7 |a extracellular Vesicles (EVs)
|2 Other
650 _ 7 |a lactadherin
|2 Other
650 _ 7 |a phosphatidylserine (PS)
|2 Other
650 _ 7 |a Phosphatidylserines
|2 NLM Chemicals
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 7 |a Annexin A5
|2 NLM Chemicals
650 _ 2 |a Extracellular Vesicles: metabolism
|2 MeSH
650 _ 2 |a Phosphatidylserines: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Biomarkers: metabolism
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Annexin A5: metabolism
|2 MeSH
700 1 _ |a Prechtl, Monica
|b 1
700 1 _ |a Scheck, Annkathrin
|b 2
700 1 _ |a Hu, Wenbo
|b 3
700 1 _ |a Ried, Christine
|b 4
700 1 _ |a Kislinger, Georg
|0 P:(DE-2719)9000614
|b 5
|u dzne
700 1 _ |a Simons, Mikael
|0 P:(DE-2719)2811642
|b 6
|u dzne
700 1 _ |a Krug, Anne B.
|b 7
700 1 _ |a Kranich, Jan
|b 8
700 1 _ |a Brocker, Thomas
|0 0000-0001-7060-5433
|b 9
773 _ _ |a 10.1002/advs.202507624
|g p. e07624
|0 PERI:(DE-600)2808093-2
|n 40
|p e07624
|t Advanced science
|v 12
|y 2025
|x 2198-3844
856 4 _ |u https://pub.dzne.de/record/281188/files/DZNE-2025-01089%20SUP1.docx
856 4 _ |u https://pub.dzne.de/record/281188/files/DZNE-2025-01089%20SUP2.docx
856 4 _ |u https://pub.dzne.de/record/281188/files/DZNE-2025-01089.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/281188/files/DZNE-2025-01089.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:281188
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9000614
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2811642
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV SCI : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:05:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:05:31Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:05:31Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-08-08T17:05:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV SCI : 2022
|d 2024-12-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-05
920 1 _ |0 I:(DE-2719)1110008
|k AG Simons
|l Molecular Neurobiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110008
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21