000285048 001__ 285048
000285048 005__ 20260209104431.0
000285048 0247_ $$2doi$$a10.1038/s41593-025-02134-7
000285048 0247_ $$2pmid$$apmid:41372679
000285048 0247_ $$2pmc$$apmc:PMC12880919
000285048 0247_ $$2ISSN$$a1097-6256
000285048 0247_ $$2ISSN$$a1546-1726
000285048 037__ $$aDZNE-2026-00172
000285048 041__ $$aEnglish
000285048 082__ $$a610
000285048 1001_ $$00000-0002-6202-3510$$aPlanert, Henrike$$b0
000285048 245__ $$aElectrophysiological classification of human layer 2-3 pyramidal neurons reveals subtype-specific synaptic interactions.
000285048 260__ $$aNew York, NY$$bNature America$$c2026
000285048 3367_ $$2DRIVER$$aarticle
000285048 3367_ $$2DataCite$$aOutput Types/Journal article
000285048 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770630185_24272
000285048 3367_ $$2BibTeX$$aARTICLE
000285048 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000285048 3367_ $$00$$2EndNote$$aJournal Article
000285048 520__ $$aUnderstanding the functional principles of the human brain requires deep insight into its neuronal and network physiology. In superficial layers of temporal cortex, molecular and morphological subtypes of glutamatergic excitatory pyramidal neurons have been described, but subtyping based on electrophysiological parameters has not been performed. The extent to which pyramidal neuron subtypes contribute to the specialization of physiological interactions by forming synaptic subnetworks remains unclear. Here we performed whole-cell patch-clamp recordings of more than 1,400 layer 2-3 (L2-3) pyramidal neurons and 1,400 identified monosynaptic connections in acute slices of human temporal cortex. We extract principles of neuronal and synaptic physiology along with anatomy and functional synaptic connectivity. We also show robust classification of pyramidal neurons into four electrophysiological subtypes, corroborated by differences in morphology and decipher subtype-specific synaptic interactions. Principles of microcircuit organization are found to be conserved at the individual level. Such a fine network structure suggests that the functional diversity of pyramidal neurons translates into differential computations within the L2-3 microcircuit of the human cortex.
000285048 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000285048 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000285048 650_2 $$2MeSH$$aHumans
000285048 650_2 $$2MeSH$$aPyramidal Cells: physiology
000285048 650_2 $$2MeSH$$aPyramidal Cells: classification
000285048 650_2 $$2MeSH$$aPyramidal Cells: cytology
000285048 650_2 $$2MeSH$$aSynapses: physiology
000285048 650_2 $$2MeSH$$aPatch-Clamp Techniques
000285048 650_2 $$2MeSH$$aTemporal Lobe: physiology
000285048 650_2 $$2MeSH$$aTemporal Lobe: cytology
000285048 650_2 $$2MeSH$$aMale
000285048 650_2 $$2MeSH$$aFemale
000285048 650_2 $$2MeSH$$aAdult
000285048 650_2 $$2MeSH$$aNerve Net: physiology
000285048 650_2 $$2MeSH$$aMiddle Aged
000285048 7001_ $$00000-0003-2258-3051$$aMittermaier, Franz Xaver$$b1
000285048 7001_ $$00000-0003-3026-136X$$aGrosser, Sabine$$b2
000285048 7001_ $$00000-0001-6373-4763$$aFidzinski, Pawel$$b3
000285048 7001_ $$aSchneider, Ulf Christoph$$b4
000285048 7001_ $$00000-0001-6941-3397$$aRadbruch, Helena$$b5
000285048 7001_ $$aOnken, Julia$$b6
000285048 7001_ $$00000-0003-2258-1670$$aHoltkamp, Martin$$b7
000285048 7001_ $$0P:(DE-2719)2810725$$aSchmitz, Dietmar$$b8$$udzne
000285048 7001_ $$00000-0003-1404-4138$$aAlle, Henrik$$b9
000285048 7001_ $$00000-0003-3214-2233$$aVida, Imre$$b10
000285048 7001_ $$00000-0001-9552-4322$$aGeiger, Jörg Rolf Paul$$b11
000285048 7001_ $$00000-0002-0317-1353$$aPeng, Yangfan$$b12
000285048 773__ $$0PERI:(DE-600)1494955-6$$a10.1038/s41593-025-02134-7$$gVol. 29, no. 2, p. 455 - 466$$n2$$p455 - 466$$tNature neuroscience$$v29$$x1097-6256$$y2026
000285048 8564_ $$uhttps://pub.dzne.de/record/285048/files/DZNE-2026-00172.pdf$$yRestricted
000285048 8564_ $$uhttps://pub.dzne.de/record/285048/files/DZNE-2026-00172.pdf?subformat=pdfa$$xpdfa$$yRestricted
000285048 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810725$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000285048 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000285048 9141_ $$y2026
000285048 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-11-07$$wger
000285048 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2025-11-07$$wger
000285048 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT NEUROSCI : 2022$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-11-07
000285048 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bNAT NEUROSCI : 2022$$d2025-11-07
000285048 9201_ $$0I:(DE-2719)1810004$$kAG Schmitz$$lNetwork Dysfunction$$x0
000285048 980__ $$ajournal
000285048 980__ $$aEDITORS
000285048 980__ $$aVDBINPRINT
000285048 980__ $$aI:(DE-2719)1810004
000285048 980__ $$aUNRESTRICTED