001     285048
005     20260209104431.0
024 7 _ |a 10.1038/s41593-025-02134-7
|2 doi
024 7 _ |a pmid:41372679
|2 pmid
024 7 _ |a pmc:PMC12880919
|2 pmc
024 7 _ |a 1097-6256
|2 ISSN
024 7 _ |a 1546-1726
|2 ISSN
037 _ _ |a DZNE-2026-00172
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Planert, Henrike
|0 0000-0002-6202-3510
|b 0
245 _ _ |a Electrophysiological classification of human layer 2-3 pyramidal neurons reveals subtype-specific synaptic interactions.
260 _ _ |a New York, NY
|c 2026
|b Nature America
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770630185_24272
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the functional principles of the human brain requires deep insight into its neuronal and network physiology. In superficial layers of temporal cortex, molecular and morphological subtypes of glutamatergic excitatory pyramidal neurons have been described, but subtyping based on electrophysiological parameters has not been performed. The extent to which pyramidal neuron subtypes contribute to the specialization of physiological interactions by forming synaptic subnetworks remains unclear. Here we performed whole-cell patch-clamp recordings of more than 1,400 layer 2-3 (L2-3) pyramidal neurons and 1,400 identified monosynaptic connections in acute slices of human temporal cortex. We extract principles of neuronal and synaptic physiology along with anatomy and functional synaptic connectivity. We also show robust classification of pyramidal neurons into four electrophysiological subtypes, corroborated by differences in morphology and decipher subtype-specific synaptic interactions. Principles of microcircuit organization are found to be conserved at the individual level. Such a fine network structure suggests that the functional diversity of pyramidal neurons translates into differential computations within the L2-3 microcircuit of the human cortex.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Pyramidal Cells: physiology
|2 MeSH
650 _ 2 |a Pyramidal Cells: classification
|2 MeSH
650 _ 2 |a Pyramidal Cells: cytology
|2 MeSH
650 _ 2 |a Synapses: physiology
|2 MeSH
650 _ 2 |a Patch-Clamp Techniques
|2 MeSH
650 _ 2 |a Temporal Lobe: physiology
|2 MeSH
650 _ 2 |a Temporal Lobe: cytology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Nerve Net: physiology
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
700 1 _ |a Mittermaier, Franz Xaver
|0 0000-0003-2258-3051
|b 1
700 1 _ |a Grosser, Sabine
|0 0000-0003-3026-136X
|b 2
700 1 _ |a Fidzinski, Pawel
|0 0000-0001-6373-4763
|b 3
700 1 _ |a Schneider, Ulf Christoph
|b 4
700 1 _ |a Radbruch, Helena
|0 0000-0001-6941-3397
|b 5
700 1 _ |a Onken, Julia
|b 6
700 1 _ |a Holtkamp, Martin
|0 0000-0003-2258-1670
|b 7
700 1 _ |a Schmitz, Dietmar
|0 P:(DE-2719)2810725
|b 8
|u dzne
700 1 _ |a Alle, Henrik
|0 0000-0003-1404-4138
|b 9
700 1 _ |a Vida, Imre
|0 0000-0003-3214-2233
|b 10
700 1 _ |a Geiger, Jörg Rolf Paul
|0 0000-0001-9552-4322
|b 11
700 1 _ |a Peng, Yangfan
|0 0000-0002-0317-1353
|b 12
773 _ _ |a 10.1038/s41593-025-02134-7
|g Vol. 29, no. 2, p. 455 - 466
|0 PERI:(DE-600)1494955-6
|n 2
|p 455 - 466
|t Nature neuroscience
|v 29
|y 2026
|x 1097-6256
856 4 _ |u https://pub.dzne.de/record/285048/files/DZNE-2026-00172.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/285048/files/DZNE-2026-00172.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810725
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2026
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2025-11-07
|w ger
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-11-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-11-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-11-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NEUROSCI : 2022
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-11-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-11-07
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT NEUROSCI : 2022
|d 2025-11-07
920 1 _ |0 I:(DE-2719)1810004
|k AG Schmitz
|l Network Dysfunction
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1810004
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21