Journal Article (Review Article) DZNE-2020-05850

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Latest emerging functions of SPP/SPPL intramembrane proteases.

 ;  ;

2017
Elsevier74814 Amsterdam

European journal of cell biology 96(5), 372-382 () [10.1016/j.ejcb.2017.03.002]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Signal peptide peptidase (SPP) and the four related SPP-like (SPPL) proteases are homologues of the presenilins, which comprise the catalytic centre of the γ-secretase complex. SPP/SPPL proteases are GxGD-type aspartyl intramembrane proteases selective for substrates with a type II membrane topology. Subcellular localisations of SPP/SPPL proteases range from the early secretory pathway to the plasma membrane and the endocytic system. Similarly diverse are their functional roles at the cellular level covering the turnover of signal peptides and membrane proteins, a contribution to the ERAD pathway as well as the regulation of cellular protein glycosylation and certain signaling pathways. Much less well understood are the physiological functions of SPP/SPPL proteases in complex organisms. Whereas a major role of SPPL2a for homeostasis of B cells and dendritic cells has been documented in mice, in vivo functions of SPP and the other SPPLs remain largely elusive to date. SPP/SPPL proteases contribute to regulated intramembrane proteolysis (RIP), a sequential processing of single-spanning transmembrane proteins by an ectodomain sheddase and an intramembrane-cleaving protease (I-CLIP). However, recent studies reported the cleavage of tail-anchored and multi-pass membrane proteins by SPP as well as the capability of SPPL3 to accept substrates without a preceding ectodomain shedding. This revealed that the mechanistic properties within this family are more diverse than initially thought. With this review, we aim to provide an update on recent achievements in defining the function and (patho-) physiological relevance of SPP/SPPL proteases and to highlight open questions in the field.

Keyword(s): Animals (MeSH) ; Aspartic Acid Endopeptidases (MeSH) ; Humans (MeSH) ; Membrane Proteins (MeSH) ; Membrane Proteins ; Aspartic Acid Endopeptidases ; signal peptide peptidase

Classification:

Contributing Institute(s):
  1. Signal Peptide Peptidases as Models for γ-Secretase (AG Fluhrer)
Research Program(s):
  1. 342 - Disease Mechanisms and Model Systems (POF3-342) (POF3-342)

Appears in the scientific report 2017
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > M DZNE > M DZNE-AG Fluhrer
Public records
Publications Database

 Record created 2020-02-18, last modified 2024-03-21


Fulltext:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)