Journal Article DZNE-2021-00387

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
BMJ Publishing Group London

Journal of neurology, neurosurgery, and psychiatry 92(6), 608 - 616 () [10.1136/jnnp-2020-324106]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Structural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis.A total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation.Average 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores.Our results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.

Classification:

Contributing Institute(s):
  1. Clinical Dementia Research München (Clinical Dementia Research München)
Research Program(s):
  1. 353 - Clinical and Health Care Research (POF4-353) (POF4-353)

Appears in the scientific report 2021
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 10 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > M DZNE > M DZNE-AG Levin
Public records
Publications Database

 Record created 2021-06-21, last modified 2023-09-15



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)