Journal Article DZNE-2025-01176

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Altered Coding of Environmental Boundaries in Human Aging: An fMRI Study

 ;  ;  ;

2025
Wiley New York, NY [u.a.]

Hippocampus 35(6), e70044 () [10.1002/hipo.70044]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Aging is associated with changes in spatial memory and navigation, yet the mechanisms underlying these changes are not yet fully understood. Environmental boundaries are among the most salient and reliable spatial cues, supporting both spatial memory and orientation. Here, we investigated how aging affects the use and the neural representation of boundary information during a virtual object location memory task. Healthy young and older adults navigated a square virtual environment while undergoing functional magnetic resonance imaging, allowing us to assess moment-to-moment encoding of distance to environmental boundaries in the entorhinal cortex and subiculum. Behaviorally, both age groups showed more accurate memory for objects located near boundaries, but this effect was amplified in older adults, whose spatial precision declined more steeply with increasing distance from boundaries. Older adults also exhibited a stronger bias to recall objects closer to boundaries. Analysis of navigation behavior revealed that older adults followed boundary-oriented paths regardless of target location, whereas young adults flexibly adapted their navigation based on spatial context. Neurally, older adults—but not young adults—showed significant blood-oxygen-level-dependent modulation by boundary distance in the entorhinal cortex and subiculum, with activity decreasing as participants moved farther from boundaries. This effect was most pronounced in low-performing older adults and was associated with stronger behavioral boundary bias, suggesting a maladaptive reliance on proximity-based cues. Together, our results provide converging behavioral and neural evidence that aging alters the use and representation of boundary information, with downstream effects on spatial memory. Altered boundary processing may represent a key mechanism contributing to age-related declines in spatial cognition.

Classification:

Contributing Institute(s):
  1. Aging, Cognition and Technology (AG Wolbers)
Research Program(s):
  1. 353 - Clinical and Health Care Research (POF4-353) (POF4-353)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > MD DZNE > MD DZNE-AG Wolbers
Full Text Collection
Public records
Publications Database

 Record created 2025-10-16, last modified 2025-11-13