Journal Article DZNE-2023-00577

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
7T amygdala and hippocampus subfields in volumetry-based associations with memory: A 3-year follow-up study of early Alzheimer's disease.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
Elsevier [Amsterdam u.a.]

NeuroImage: Clinical 38, 103439 () [10.1016/j.nicl.2023.103439]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: The hippocampus is the most prominent single region of interest (ROI) for the diagnosis and prediction of Alzheimer's disease (AD). However, its suitability in the earliest stages of cognitive decline, i.e., subjective cognitive decline (SCD), remains uncertain which warrants the pursuit of alternative or complementary regions. The amygdala might be a promising candidate, given its implication in memory as well as other psychiatric disorders, e.g. depression and anxiety, which are prevalent in SCD. In this 7 tesla (T) magnetic resonance imaging (MRI) study, we aimed to compare the contribution of volumetric measurements of the hippocampus, the amygdala, and their respective subfields, for early diagnosis and prediction in an AD-related study population.Participants from a longitudinal study were grouped into SCD (n = 29), mild cognitive impairment (MCI, n = 23), AD (n = 22) and healthy control (HC, n = 31). All participants underwent 7T MRI at baseline and extensive neuropsychological testing at up to three visits (baseline n = 105, 1-year n = 78, 3-year n = 39). Analysis of covariance (ANCOVA) was used to assess group differences of baseline volumes of the amygdala and the hippocampus and their subfields. Linear mixed models were used to estimate the effects of baseline volumes on yearly changes of a z-scaled memory score. All models were adjusted to age, sex and education.Compared to the HC group, individuals with SCD showed smaller amygdala ROI volumes (range across subfields -11% to -1%), but not hippocampus ROI volumes (-2% to 1%) except for the hippocampus-amygdala-transition-area (-7%). However, cross-sectional associations between baseline memory and volumes were smaller for amygdala ROIs (std. ß [95% CI] ranging between 0.16 [0.08; 0.25] and 0.46 [0.31; 0.60]) than hippocampus ROIs (between 0.32 [0.19; 0.44] and 0.53 [0.40; 0.67]). Further, the association of baseline volumes with yearly memory change in the HC and SCD groups was similarly weak for amygdala ROIs and hippocampus ROIs. In the MCI group, volumes of amygdala ROIs were associated with a relevant yearly memory decline [95% CI] ranging between -0.12 [-0.24; 0.00] and -0.26 [-0.42; -0.09] for individuals with 20% smaller volumes than the HC group. However, effects were stronger for hippocampus ROIs with a corresponding yearly memory decline ranging between -0.21 [-0.35; -0.07] and -0.31 [-0.50; -0.13].Volumes of amygdala ROIs, as determined by 7T MRI, might contribute to objectively and non-invasively identify patients with SCD, and thus aid early diagnosis and treatment of individuals at risk to develop dementia due to AD, however associations with other psychiatric disorders should be evaluated in further studies. The amygdala's value in the prediction of longitudinal memory changes in the SCD group remains questionable. Primarily in patients with MCI, memory decline over 3 years appears to be more strongly associated with volumes of hippocampus ROIs than amygdala ROIs.

Keyword(s): Humans (MeSH) ; Follow-Up Studies (MeSH) ; Alzheimer Disease: pathology (MeSH) ; Longitudinal Studies (MeSH) ; Cross-Sectional Studies (MeSH) ; Cognitive Dysfunction: pathology (MeSH) ; Magnetic Resonance Imaging (MeSH) ; Amygdala: diagnostic imaging (MeSH) ; Amygdala: pathology (MeSH) ; Neuropsychological Tests (MeSH) ; Memory Disorders: diagnostic imaging (MeSH) ; Memory Disorders: etiology (MeSH) ; Alzheimer’s disease ; 7T MRI ; Alzheimer’s disease ; Amygdala ; Hippocampus ; Memory ; SCD

Classification:

Contributing Institute(s):
  1. Dementia Prevention – Mechanisms and Clinical Implementation (AG Flöel)
  2. Clinical Neurophysiology and Memory (AG Düzel 3)
Research Program(s):
  1. 353 - Clinical and Health Care Research (POF4-353) (POF4-353)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ROS DZNE > ROS DZNE-AG Flöel
Institute Collections > MD DZNE > MD DZNE-AG Düzel
Full Text Collection
Public records
Publications Database

 Record created 2023-06-12, last modified 2024-01-12