Journal Article DZNE-2025-01230

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A computational ontology framework for the synthesis of multi-level pathology reports from brain MRI scans.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
IOS Press Amsterdam

Journal of Alzheimer's disease 108(1_suppl), S258 - S273 () [10.1177/13872877251331222]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: BackgroundConvolutional neural network (CNN) based volumetry of MRI data can help differentiate Alzheimer's disease (AD) and the behavioral variant of frontotemporal dementia (bvFTD) as causes of cognitive decline and dementia. However, existing CNN-based MRI volumetry tools lack a structured hierarchical representation of brain anatomy, which would allow for aggregating regional pathological information and automated computational inference.ObjectiveDevelop a computational ontology pipeline for quantifying hierarchical pathological abnormalities and visualize summary charts for brain atrophy findings, aiding differential diagnosis.MethodsUsing FastSurfer, we segmented brain regions and measured volume and cortical thickness from MRI scans pooled across multiple cohorts (N = 3433; ADNI, AIBL, DELCODE, DESCRIBE, EDSD, and NIFD), including healthy controls, prodromal and clinical AD cases, and bvFTD cases. Employing the Web Ontology Language (OWL), we built a semantic model encoding hierarchical anatomical information. Additionally, we created summary visualizations based on sunburst plots for visual inspection of the information stored in the ontology.ResultsOur computational framework dynamically estimated and aggregated regional pathological deviations across different levels of neuroanatomy abstraction. The disease similarity index derived from the volumetric and cortical thickness deviations achieved an AUC of 0.88 for separating AD and bvFTD, which was also reflected by distinct atrophy profile visualizations.ConclusionsThe proposed automated pipeline facilitates visual comparison of atrophy profiles across various disease types and stages. It provides a generalizable computational framework for summarizing pathologic findings, potentially enhancing the physicians' ability to evaluate brain pathologies robustly and interpretably.

Keyword(s): Humans (MeSH) ; Magnetic Resonance Imaging: methods (MeSH) ; Alzheimer Disease: pathology (MeSH) ; Alzheimer Disease: diagnostic imaging (MeSH) ; Brain: pathology (MeSH) ; Brain: diagnostic imaging (MeSH) ; Male (MeSH) ; Female (MeSH) ; Aged (MeSH) ; Frontotemporal Dementia: pathology (MeSH) ; Frontotemporal Dementia: diagnostic imaging (MeSH) ; Atrophy: pathology (MeSH) ; Neural Networks, Computer (MeSH) ; Middle Aged (MeSH) ; Alzheimer's disease ; brain volumetry ; computer graphics ; frontotemporal dementia ; magnetic resonance imaging ; neuroanatomy ; ontology

Classification:

Contributing Institute(s):
  1. Clinical Dementia Research (Rostock /Greifswald) (AG Teipel)
  2. Clinical Research Platform (CRP) (AG Spottke)
  3. Clinical Research Platform (CRP) (Clinical Research Platform (CRP))
  4. Translational Neurodegeneration (AG Hermann)
  5. Translational Neuropsychiatry (AG Priller)
  6. Clinical Research (Munich) (Clinical Research (Munich))
  7. Clinical Neurophysiology and Memory (AG Düzel)
  8. Patient Studies (Bonn) (Patient Studies (Bonn))
  9. Biomarker-Assisted Early Detection of Dementias (AG Peters)
  10. Clinical Research Coordination (Clinical Research (Bonn))
  11. Parkinson Genetics (AG Gasser)
  12. Clinical Neurodegeneration (AG Levin)
  13. Vascular Cognitive Impairment & Post-Stroke Dementia (AG Dichgans)
  14. Translational Dementia Research (Bonn) (AG Schneider)
  15. Clinical Alzheimer’s Disease Research (AG Jessen)
  16. Molecular biomarkers for predictive diagnostics of neurodegenerative diseases (AG Wiltfang)
Research Program(s):
  1. 353 - Clinical and Health Care Research (POF4-353) (POF4-353)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > BN DZNE > BN DZNE-Clinical Research Platform (CRP)
Institute Collections > BN DZNE > BN DZNE-Clinical Research (Bonn)
Institute Collections > M DZNE > M DZNE-Clinical Research (Munich)
Institute Collections > BN DZNE > BN DZNE-Patient Studies (Bonn)
Document types > Articles > Journal Article
Institute Collections > GÖ DZNE > GÖ DZNE-AG Wiltfang
Institute Collections > BN DZNE > BN DZNE-AG Schneider
Institute Collections > ROS DZNE > ROS DZNE-AG Hermann
Institute Collections > ROS DZNE > ROS DZNE-AG Teipel
Institute Collections > TÜ DZNE > TÜ DZNE-AG Gasser
Institute Collections > BN DZNE > BN DZNE-AG Spottke
Institute Collections > BN DZNE > BN DZNE-AG Jessen
Institute Collections > MD DZNE > MD DZNE-AG Düzel
Institute Collections > M DZNE > M DZNE-AG Dichgans
Institute Collections > B DZNE > B DZNE-AG Priller
Institute Collections > B DZNE > B DZNE-AG Peters
Institute Collections > M DZNE > M DZNE-AG Levin
Full Text Collection
Public records
Publications Database

 Record created 2025-11-05, last modified 2025-11-18