Home > Publications Database > A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. |
Journal Article | DZNE-2021-00162 |
; ;
2020
Elsevier
[New York, NY]
This record in other databases:
Please use a persistent id in citations: doi:10.1016/j.celrep.2020.108175
Abstract: To predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell transcriptomics across various healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Intestinal goblet cells, enterocytes, and kidney proximal tubule cells appear highly permissive to SARS-CoV-2, consistent with clinical data. Our analysis also predicts non-canonical entry paths for lung and brain infections. Spermatogonial cells and prostate endocrine cells also appear to be permissive to SARS-CoV-2 infection, suggesting male-specific vulnerabilities. Both pro- and anti-viral factors are highly expressed within the nasal epithelium, with potential age-dependent variation, predicting an important battleground for coronavirus infection. Our analysis also suggests that early embryonic and placental development are at moderate risk of infection. Lastly, SCARF expression appears broadly conserved across a subset of primate organs examined. Our study establishes a resource for investigations of coronavirus biology and pathology.
Keyword(s): A549 Cells (MeSH) ; Angiotensin-Converting Enzyme 2 (MeSH) ; Animals (MeSH) ; Betacoronavirus: growth & development (MeSH) ; COVID-19 (MeSH) ; Cell Line (MeSH) ; Chlorocebus aethiops (MeSH) ; Coronavirus Infections: pathology (MeSH) ; Enterocytes: metabolism (MeSH) ; Gene Expression Profiling (MeSH) ; Goblet Cells: metabolism (MeSH) ; HEK293 Cells (MeSH) ; Humans (MeSH) ; Kidney Tubules, Proximal: cytology (MeSH) ; Kidney Tubules, Proximal: metabolism (MeSH) ; Nasal Mucosa: metabolism (MeSH) ; Nasal Mucosa: virology (MeSH) ; Pandemics (MeSH) ; Peptidyl-Dipeptidase A: genetics (MeSH) ; Peptidyl-Dipeptidase A: metabolism (MeSH) ; Pneumonia, Viral: pathology (MeSH) ; Receptors, Virus: genetics (MeSH) ; SARS-CoV-2 (MeSH) ; Serine Endopeptidases: genetics (MeSH) ; Serine Endopeptidases: metabolism (MeSH) ; Single-Cell Analysis (MeSH) ; Vero Cells (MeSH) ; Viral Tropism: genetics (MeSH) ; Virus Internalization (MeSH) ; COVID-19 ; SARS-CoV-2 ; coronaviruses ; restriction factors ; scRNA-seq ; viral receptors ; Receptors, Virus ; Peptidyl-Dipeptidase A ; ACE2 protein, human ; Angiotensin-Converting Enzyme 2 ; Serine Endopeptidases ; TMPRSS2 protein, human
![]() |
The record appears in these collections: |