Journal Article DZNE-2022-01665

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Human variation in population-wide gene expression data predicts gene perturbation phenotype.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Elsevier St. Louis

iScience 25(11), 105328 () [10.1016/j.isci.2022.105328]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function 'in population' experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort.

Keyword(s): Clinical genetics ; Human genetics ; Pathophysiology

Classification:

Contributing Institute(s):
  1. Platform for Single Cell Genomics and Epigenomics (PRECISE)
  2. Statistics and Machine Learning (AG Mukherjee)
  3. Microglia and Neuroinflammation (AG Halle)
Research Program(s):
  1. 352 - Disease Mechanisms (POF4-352) (POF4-352)
  2. 354 - Disease Prevention and Healthy Aging (POF4-354) (POF4-354)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > BN DZNE > BN DZNE-AG Mukherjee
Institute Collections > BN DZNE > BN DZNE-AG Halle
Institute Collections > BN DZNE > BN DZNE-PRECISE
Full Text Collection
Public records
Publications Database


Linked articles:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;
huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data.
STAR Protocols 4(2), 102193 () [10.1016/j.xpro.2023.102193] OpenAccess  Download fulltext Files  Download fulltextFulltext by Pubmed Central BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Software
Software: huva, v0.1.4
Zenodo () [10.5281/ZENODO.7071267] BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Software
Software: huva, v0.1.5
Zenodo () [10.5281/ZENODO.7088729] BibTeX | EndNote: XML, Text | RIS


 Record created 2022-11-22, last modified 2024-09-18